People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Claisse, P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Strength, durability and leaching properties of concrete paving blocks incorporating GGBS and SF
Abstract
Ternary blends are a response to the economic and environmental pressure to reduce the cement content of concrete paving blocks. The cementitious materials used to replace Ordinary Portland cement (OPC) were Ground Granulated Blast Furnace Slag (GGBS) and Silica fume (SF). The study reported on the optimised mix from analysis of cement paste cubes. Thereafter the two mixes with the greatest strength were produced in the factory. The study successfully reduced the cement content of concrete paving blocks by 40% and managed to achieve greater strengths than the control mix. The leaching analysis reported that the higher permeability of mixes containing cement replacements resulted in these mixes absorbing less leachate, however gave satisfying performance for protection of leachate to ground sources.