People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dorn, Michael
Linnaeus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2020Determination of coefficients of friction for laminated veneer lumber on steel under high pressure loadscitations
- 2018Anisotropic Elastic-Viscoplastic Properties at Finite Strains of Injection-Moulded Low-Density Polyethylenecitations
- 2016Integrative experimental characterization and engineering modeling of single-dowel connections in LVLcitations
- 2016Experimental characterization of the global and local behavior of multi-dowel LVL-connections under complex loadingcitations
- 2014Joint study on material properties of adhesives to be used in load-bearing timber-glass composite elements.
- 20103D-Modeling of Dowel-Type Timber Connections
Places of action
Organizations | Location | People |
---|
article
Integrative experimental characterization and engineering modeling of single-dowel connections in LVL
Abstract
In order to be able to realistically and consistently elucidate and subsequently simulate the load–displacement behavior of single-dowel connections, the material behavior of the individual components, namely steel dowels and wood, needs to be investigated. The behavior of slotted-in, single-dowel steel-to-laminated veneer lumber (LVL) connections with dowel diameters of 12 and 20 mm is thoroughly discussed here in relation to steel dowel and LVL properties. In addition to connection tests at different load-to-grain directions of 0°, 45° and 90°, the corresponding embedment behavior of LVL was tested up to dowel displacements of three times the dowel diameter. The material behavior of steel dowels was studied by means of tensile and 3-point bending tests and accompanying finite element simulations. A pronounced nonlinear behavior of the single-dowel connections was observed for all load-to-grain directions. In case of loading perpendicular to the grain, a significant hardening behavior was obvious. Due to the anisotropic material properties of wood, enforcing a loading direction of 45° to the grain resulted in an additional force perpendicular to the load direction which was quantified in a novel biaxial test setup. Thus, a comprehensive and consistent database over different scales of observations of dowel connections could be established, which subsequently was exploited by means of engineering modeling. The comparison of experimental and numerical data illustrates the potential of the engineering modeling approach to overcome drawbacks of current design regulations, which are unable to appropriately predict stiffness properties of dowel connections. Moreover, the quasi-elastic limit of dowel connections was calculated and discussed by means of the model.