People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nguyen, Tien-Dung
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Potential additives for magnesia-based concrete with enhanced performance and propensity for CO2 sequestrationcitations
- 2022New frontiers in sustainable cementscitations
- 2022Potential additives for magnesia-based concrete with enhanced performance and propensity for CO 2 sequestrationcitations
- 2021Improving the carbonation resistance of Na2CO3-activated slag mixes via the use of reactive MgO and nucleation seedingcitations
- 2018Improving the Carbonation of Reactive MgO Cement Concrete via the Use of NaHCO3 and NaClcitations
- 2018Improving the Carbonation of Reactive MgO Cement Concrete via the Use of NaHCO 3 and NaClcitations
- 2018Development of MgO concrete with enhanced hydration and carbonation mechanismscitations
- 2017Performance and microstructural development of MgO-SiO 2 binders under different curing conditionscitations
- 2017Influence of nucleation seeding on the performance of carbonated MgO formulationscitations
- 2017Performance and microstructural development of MgO-SiO2 binders under different curing conditionscitations
- 2016Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC bindercitations
- 2016Improving the performance of reactive MgO cement-based concrete mixescitations
- 2016Sulfate resistance of low energy SFC no-cement mortarcitations
- 2015Influence of circulating fluidized bed combustion (CFBC) fly ash on properties of modified high volume low calcium fly ash (HVFA) cement paste
Places of action
Organizations | Location | People |
---|
article
Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC binder
Abstract
This study investigated the engineering properties and durability of the high-strength self-compacting concrete (SCC) manufactured by an innovative no-cement SFC binder, which was purely produced with a ternary mixture of three industrial by-products of ground granulated blast furnace slag, low calcium Class F fly ash and circulating fluidized bed combustion (CFBC) fly ash. A fixed amount of 15 wt.% of combustion fly ash was adopted to trigger the hydration mechanism of various mixtures of no-cement SFC binder. Experimental results showed that the compressive strengths of the resulting SCCs at age of 28 days were in the range of 41.8–65.6 MPa, and an amount of 30 wt.% of Class F fly ash was found to be an optimal value to produce the SCC with excellent flowing and passing capability, preferable durability and mechanical properties.<br/><br/>