People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lee, Hyuk
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2020Cohesive-strength properties versus porosity of cementitious materialscitations
- 2020Identification of transversely isotropy of calcium silicate hydrate using nanoindentation and finite element analysiscitations
- 2020Cohesive-strength homogenisation model of porous and non-porous materials using linear comparison composites and applicationcitations
- 2019Study of strain-hardening behaviour of fibre-reinforced alkali-activated fly ash cementcitations
- 2019An investigation of nanomechanical properties of Materials using nanoindentation and Artificial Neural Networkcitations
- 2018Creep properties of cement and alkali activated fly ash materials using nanoindentation techniquecitations
- 2016Residual strength of blended cement pastes and mortar exposed to elevated temperatures
- 2016Mechanical and micromechanical properties of alkali activated fly-ash cement based on nano-indentationcitations
Places of action
Organizations | Location | People |
---|
article
Mechanical and micromechanical properties of alkali activated fly-ash cement based on nano-indentation
Abstract
<p>This paper presents mechanical and micromechanical properties of alkali activated fly-ash cement (AAFA) based on statistical analysis with nano-indentation test. Mix proportions of AAFA are designed using Taguchi's approach. Four variables viz, silica fume (SF), sand to cementitious material ratio (s/c), liquid to solid ratio (l/s) and superplasticiser (SP) content were the parameters tested. Indentation elastic modulus, hardness and packing density are studied. The results show that the increase in sand has the greatest contribution to the increase in density. For compressive strength, normal paste without SF, sand and SP with l/s of 0.6 gives the highest strength and the increase in SF significantly contributes to the adverse effect on compressive strength. For the indentation data, the analysis using deconvolution technique confirms the four phases of reaction products of AAFA. The main phase is sodium aluminosilicate hydrate (N-A-S-H), which is over 40% of the volume fraction. The microporomechanics of AAFA paste and mortar also demonstrate the relationships between the N-A-S-H volume fraction and strength; and activation degree and strength.</p>