People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nguyen, Tien-Dung
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Potential additives for magnesia-based concrete with enhanced performance and propensity for CO2 sequestrationcitations
- 2022New frontiers in sustainable cementscitations
- 2022Potential additives for magnesia-based concrete with enhanced performance and propensity for CO 2 sequestrationcitations
- 2021Improving the carbonation resistance of Na2CO3-activated slag mixes via the use of reactive MgO and nucleation seedingcitations
- 2018Improving the Carbonation of Reactive MgO Cement Concrete via the Use of NaHCO3 and NaClcitations
- 2018Improving the Carbonation of Reactive MgO Cement Concrete via the Use of NaHCO 3 and NaClcitations
- 2018Development of MgO concrete with enhanced hydration and carbonation mechanismscitations
- 2017Performance and microstructural development of MgO-SiO 2 binders under different curing conditionscitations
- 2017Influence of nucleation seeding on the performance of carbonated MgO formulationscitations
- 2017Performance and microstructural development of MgO-SiO2 binders under different curing conditionscitations
- 2016Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC bindercitations
- 2016Improving the performance of reactive MgO cement-based concrete mixescitations
- 2016Sulfate resistance of low energy SFC no-cement mortarcitations
- 2015Influence of circulating fluidized bed combustion (CFBC) fly ash on properties of modified high volume low calcium fly ash (HVFA) cement paste
Places of action
Organizations | Location | People |
---|
article
Sulfate resistance of low energy SFC no-cement mortar
Abstract
This study presents the sulfate resistance of various low energy no-cement mortars made with SFC binder which was fabricated by purely combining three industrial by-products of ground granulated blast furnace slag (GGBFS) (S), Class F fly ash (FFA) (F), and circulating fluidized bed combustion fly ash (CFA) (C). The sulfate resistance of the mortar was determined based on the effects of sodium sulfate solution (NaSO4, 5%) on its expansion, strength loss, and phase changes. Experimental results showed that the SFC mortars had much better sulfate resistance than that of ordinary Portland cement (OPC) mortars. The increase of FFA amount significantly increased the sulfate resistance of SFC cement mortars with lower expansion and relatively high compressive strengths. The diffusing ions such as Na+ and SO42− from the sulfate environment noticeably activated the pozzolanic reaction of FFA in the hardened SFC binder pastes resulting in stronger microstructure of the mortar specimens. On the contrary, these ions adversely caused undesired expansive damage of OPC mortars resulting from the formulation of excessive ettringite (AFt) and gypsum precipitation.<br/><br/>