People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Poulsen, Peter Noe
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Full-scale tests of two-storey precast reinforced concrete shear walls:Investigation of strength and deformation capacitycitations
- 2024Full-scale tests of two-storey precast reinforced concrete shear wallscitations
- 2021Keyed shear connections with looped U‐bars subjected to normal and shear forces Part I: Experimental investigationcitations
- 2021Keyed shear connections with looped U‐bars subjected to normal and shear forces Part Icitations
- 2020Solid finite element limit analysis for modelling of pile caps
- 2020Solid finite element limit analysis for modelling of pile caps
- 2017General cracked-hinge model for simulation of low-cycle damage in cemented beams on soilcitations
- 2017General cracked-hinge model for simulation of low-cycle damage in cemented beams on soilcitations
- 20153-D cohesive finite element model for application in structural analysis of heavy duty composite pavementscitations
- 2015Modelling of composite concrete block pavement systems applying a cohesive zone model
- 2012Characterization of mixed mode crack opening in concretecitations
- 2012Characterization of mixed mode crack opening in concretecitations
- 2011Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method
- 2011Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method
- 2010Finite Element Implementation of a Glass Tempering Model in Three Dimensionscitations
- 2010Finite Element Implementation of a Glass Tempering Model in Three Dimensionscitations
- 2007An implementation of 3D viscoelatic behavior for glass during toughening
- 2007An implementation of 3D viscoelatic behavior for glass during toughening
- 2007On the application of cohesive crack modeling in cementitious materialscitations
- 2007On the application of cohesive crack modeling in cementitious materialscitations
- 2006Modeling of ECC materials using numerical formulations based on plasticity
- 2006Simulation of strain-hardening in ECC uniaxial test specimen by use of a damage mechanics formulation
- 2006Condition For Strain-Hardening In Ecc Uniaxial Test Specimen
Places of action
Organizations | Location | People |
---|
article
3-D cohesive finite element model for application in structural analysis of heavy duty composite pavements
Abstract
The problem of stiffness degradation in composite pavement systems from localised fracture damage in the quasibrittle cement bound granular mixture are today taken into account only by empirical formulas. These formulas deals with a limited number of materials in a restricted range of design options and would yield unrealistic results in ultimate loading conditions. Cohesive modelling is one of the primary methods to handle localised damage in quasi-brittle materials, e.g., concrete, describing the potential crack in a discrete manner. To increase the versatility of existing methods this paper presents a numerical analysis of the fracture behaviour of cement bound granular mixtures in composite concrete block pavement systems applying a cohesive model. The functionality of the proposed model is compared to experimental investigations of beam bending tests. The pavement is modelled as a slab on grade and parameters influencing the response such as geometry, material parameters and loading position are studied and compared to experimental results. It is found that a cohesive model is suitable for the description of the fracture behaviour of cement bound granular mixtures. Moreover, it can be shown that adequately good prediction of the structural response of composite pavements is obtained for monotonic loading without significant computational cost, making the model applicable for engineering design purpose. It is envisaged that the methodology implemented in this study can be extended and thereby contribute to the ongoing development of rational failure criteria that can replace the empirical formulas currently used in pavement engineering.