Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khalifa, Nour El Houda

  • Google
  • 1
  • 3
  • 65

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Contribution to the modeling of hydration and chemical shrinkage of slag-blended cement at early age65citations

Places of action

Chart of shared publication
Bouasker, Marwen
1 / 6 shared
Mounanga, Pierre
1 / 6 shared
Merzouki, Tarek
1 / 21 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Bouasker, Marwen
  • Mounanga, Pierre
  • Merzouki, Tarek
OrganizationsLocationPeople

article

Contribution to the modeling of hydration and chemical shrinkage of slag-blended cement at early age

  • Bouasker, Marwen
  • Khalifa, Nour El Houda
  • Mounanga, Pierre
  • Merzouki, Tarek
Abstract

This paper presents a contribution to the modeling of the chemical shrinkage of the slag-blended cement paste (binder) at early age. Assuming that the chemical shrinkage is a direct result of hydration, the hydration modeling of slag-blended cement was studied by considering the interaction between the hydrations of blast furnace slag (BFS) and ordinary Portland cement. The reaction of BFS in the presence of calcium hydroxide CH (Portlandite) produced from the hydration of the cement was investigated. The kinetic hydration of cement was developed, and the volume phases in the cementitious material during the hydration process were calculated. The chemical shrinkage, which is the negative volume balance between the reactants and the products formed, is then calculated. In parallel with this numerical modeling, an experimental study was conducted to investigate the effect of slag’s addition (0%, 30%, 50% and 80%) on the heat of hydration and chemical shrinkage at early age (maturation up to 7 days). The proposed hydration model incorporates the effect of following variables; the chemical composition of the binder, the fineness, the water to binder ratio (w/b), the curing time and the temperature.

Topics
  • impedance spectroscopy
  • phase
  • cement
  • chemical composition
  • Calcium
  • curing