People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shafiq, Nasir
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Optimization of Fresh and Mechanical Characteristics of Carbon Fiber-Reinforced Concrete Composites Using Response Surface Techniquecitations
- 2023Effects of Jute Fiber on Fresh and Hardened Characteristics of Concrete with Environmental Assessmentcitations
- 2018Effective bond length of CFRP sheets externally bonded to concrete beams under marine environmentcitations
- 2018Pull-off testing as an interfacial bond strength assessment of CFRP-concrete interface exposed to a marine environmentcitations
- 2017The behavior of Carbon Fiber Reinforced Polymer (CFRP) strengthened beams under a marine environmentcitations
- 2014Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fiberscitations
- 2014Effect of Chopped Basalt Fibers on the Mechanical Properties and Microstructure of High Performance Fiber Reinforced Concretecitations
- 2012The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concretecitations
- 2011Compressive Strength and Interfacial Transition Zone Characteristic of Geopolymer Concrete with Different Cast In-Situ Curing Conditions
- 2010The Effect of Sugar Based Retarder on Geopolymer Concrete in Different Curing Conditions
Places of action
Organizations | Location | People |
---|
article
The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete
Abstract
The development of fly ash and microwave incinerated rice husk ash (MIRHA) blend as the source material for geopolymer concrete was studied through the observation of the hardened specimen strength. Compressive and bonding strength of the specimen indicate the significance of curing temperature in the activation of MIRHA particles. The elevated temperature is presenting a suitable condition for rapid dissolution of silicate monomer and oligomer from MIRHA surfaces, which supports the formation of supersaturated aluminosilicate solution in geopolymer system. It contributes to the refinement of pores structure via the increasing geopolymer gel growth, as observed in the consistent compressive strength development of ambient-cured specimen to the oven-cured specimen. Densification of geopolymer framework appears to be the main contributor to the increasing bonding capacity of geopolymer binder. 2012 Elsevier Ltd. All rights reserved.