People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Goltermann, Per
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2021Activated Ductile CFRP NSMR Strengtheningcitations
- 2021Activated ductile CFRP NSMR strengtheningcitations
- 2020Ductile response controlled EW CFRP anchor systemcitations
- 2020Ductile response controlled EW CFRP anchor systemcitations
- 2020Shear strength of straight concrete members without shear reinforcement. Reassessment of the effectiveness factors used in the crack sliding theory
- 2019Experimental and numerical studies on the shared activation anchoring of NSMR CFRP applied to RC beams
- 2019Experimental and numerical Studies on the shared Activation Anchoring of NSMR CFRP applied to RC Beams:Seventh Asia-Pacific Conference on FRP in Structures
- 2019Assessment of shear strength of deep RC beams and beams with short shear span without transverse reinforcement
- 2019Experimental and numerical Studies on the shared Activation Anchoring of NSMR CFRP applied to RC Beams
- 2019Shared CFRP activation anchoring method applied to NSMR strengthening of RC beamscitations
- 2016Wood ash used as partly sand and/or cement replacement in mortarcitations
- 2014The Aesthetical quality of SSA-containing mortar and concrete
- 2013Incinerated sewage sludge ash as alternative binder in cement-based materials
- 2012Mechanical anchorage of FRP tendons – A literature reviewcitations
- 2012Reinforced concrete T-beams externally prestressed with unbonded carbon fiber-reinforced polymer tendons
- 2011Numerical Simulation and Experimental Validation of an Integrated Sleeve-Wedge Anchorage for CFRP Rodscitations
- 2011Shear Capacity of Steel and Polymer Fibre Reinforced Concrete Beamscitations
- 2011Shear Capacity of Steel and Polymer Fibre Reinforced Concrete Beamscitations
- 2008In-plane shear test of fibre reinforced concrete panels
Places of action
Organizations | Location | People |
---|
article
Mechanical anchorage of FRP tendons – A literature review
Abstract
High tensile strength, good resistance to degradation and creep, low weight and, to some extent, the ability to change the modulus of elasticity are some of the advantages of using prestressed, unidirectional FRP (Fibre Reinforced Polymer) tendon systems. Bonded and non-bonded versions of these systems have been investigated over the last three decades with results showing that prestressing systems can be very efficient when the FRP properties are properly exploited. However, there are often concerns as to how to exploit those properties to the full and how to achieve reliable anchorage with such systems. This is especially important in external post-tensioned tendon systems, where the anchorage points are exposed to the full load throughout the life span of the structure. Consequently, there are large requirements related to the long-term capacity and fatigue resistance of such systems. Several anchorage systems for use with Aramid, Glass and Carbon FRP tendons have been proposed over the last two decades. Each system is usually tailored to a particular type of tendon. This paper presents a brief overview of bonded anchorage applications while the primary literature review discusses three methods of mechanical anchorage: spike, wedge and clamping. Some proposals for future research are suggested. In general, the systems investigated showed inconsistent results with a small difference between achieving either a successful or an unsuccessful anchorage. These inconsistencies seem to be due to the brittleness of the tendons, low strength perpendicular to the fibre direction and insufficient stress transfer in the anchorage/tendon interface. As a result, anchorage failure modes tend to be excessive principal stresses, local crushing and interfacial slippage (abrasive wear), all of which are difficult to predict.