People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nunes, Sandra
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Hardening characterisation of a non-proprietary and more eco-friendly UHPCcitations
- 2023Hardening characterisation of a non-proprietary and more eco-friendly UHPCcitations
- 2022Multi-level study on UHPFRC incorporating ECatcitations
- 2021Chloride Ion Penetration into Cracked UHPFRC During Wetting-drying Cyclescitations
- 2021Durability of an UHPC containing spent equilibrium catalystcitations
- 2020Quaternary blends of portland cement, metakaolin, biomass ash and granite powder for production of self-compacting concretecitations
- 2019Spent equilibrium catalyst as internal curing agent in UHPFRCcitations
- 2019Spent equilibrium catalyst as internal curing agent in UHPFRCcitations
- 2018Durability of fibre reinforced cementitious composites
- 2018Alkali-activated cement using slags and fly ash
- 2014Linking fresh and durability properties of paste to SCC mortarcitations
- 2009Combined effect of two sustainable technologies: Self-compacting concrete (SCC) and controlled permeability formwork (CPF)citations
Places of action
Organizations | Location | People |
---|
article
Combined effect of two sustainable technologies: Self-compacting concrete (SCC) and controlled permeability formwork (CPF)
Abstract
The work presented in this paper aims at contributing to sustainable construction through enhancement of durability of concrete structures. Full size precast elements were cast with both self-compacting concrete (SCC) and conventional vibrated concrete (CC) using controlled permeability formwork (CPF). SCC is known to impart a more homogeneous and finer microstructure, compared to conventional concrete, therefore leading to more durable reinforced and pre-stressed concrete structures. CPF enables, in fresh concrete, drainage of excess water and air besides retaining binder particles at the concrete surface, leading to a blow-hole free surface and enhanced quality of the outer layers. The research program developed was designed to compare performance of two different CPF systems and also assess the combined effect of using OF on SCC compared to CC.