Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Eleftheroglou, Nick

  • Google
  • 2
  • 5
  • 17

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023An SHM Data-Driven Methodology for the Remaining Useful Life Prognosis of Aeronautical Subcomponents6citations
  • 2023A novel strain-based health indicator for the remaining useful life estimation of degrading composite structures11citations

Places of action

Chart of shared publication
Zarouchas, Dimitrios
2 / 30 shared
Loutas, Theodoros
2 / 13 shared
Galanopoulos, Georgios
2 / 10 shared
Milanoski, Dimitrios
2 / 6 shared
Broer, Agnes A. R.
2 / 11 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Zarouchas, Dimitrios
  • Loutas, Theodoros
  • Galanopoulos, Georgios
  • Milanoski, Dimitrios
  • Broer, Agnes A. R.
OrganizationsLocationPeople

article

A novel strain-based health indicator for the remaining useful life estimation of degrading composite structures

  • Zarouchas, Dimitrios
  • Loutas, Theodoros
  • Galanopoulos, Georgios
  • Milanoski, Dimitrios
  • Eleftheroglou, Nick
  • Broer, Agnes A. R.
Abstract

We present a generic methodology for developing a Health Indicator out of strain-based Structural Health Monitoring data suitable for implementation in prognostic tasks. For this purpose, an in-house test campaign is launched. Single-stringered composite panels are subjected to compression-compression fatigue with the strains being monitored with Fiber Bragg Grating sensors located along the stringers’ feet. Three different fatigue scenarios with increased complexity are investigated i.e. constant amplitude fatigue, variable amplitude fatigue and finally random amplitude (spectrum) fatigue. In this paper, we propose a fusion scheme based on Genetic Algorithms, with the resulted fused Health Indicator achieving high monotonicity and prognosability, both crucial attributes for an enhanced performance of prognostic algorithms. Finally, a popular machine learning algorithm, i.e. Gaussian Process Regression, is employed in order to predict the Remaining Useful Life of the panels in the test set. It is evidenced that the newly proposed fused Health Indicator predicts the Remaining Useful Life far more accurately as several popular performance metrics indicate. The methodology retains a data agnostic character able to be applied in Structural Health Monitoring data from different sensing technologies. ; Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. ; Structural Integrity & Composites

Topics
  • impedance spectroscopy
  • fatigue
  • composite
  • random
  • machine learning