Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tamayo-Vegas, Sebastian

  • Google
  • 2
  • 2
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023A Contactless Characterization of CNT/Epoxy Nanocomposites behavior under acid exposure2citations
  • 2022Experimental and modelling of temperature-dependent mechanical properties of CNT/polymer nanocomposites3citations

Places of action

Chart of shared publication
Elsdon, Michael
1 / 3 shared
Lafdi, Khalid
2 / 32 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Elsdon, Michael
  • Lafdi, Khalid
OrganizationsLocationPeople

article

A Contactless Characterization of CNT/Epoxy Nanocomposites behavior under acid exposure

  • Tamayo-Vegas, Sebastian
  • Elsdon, Michael
  • Lafdi, Khalid
Abstract

The use of polymer nanocomposites is ubiquitous in every industry. The high corrosion resistance and chemical durability of CNT/Epoxy nanocomposites make them suitable for chemical plants, oil industries, and hydrogen storage. However, unexpected failures have been reported for chemicals that unavoidably penetrate, provoking deterioration and degradation of the composite constituents. Conventional methods are impractical for evaluating structural health conditions because they often require disassembly of the structure and complex post-processing analysis. Contactless material characterization methods, on the other hand, are rather promising tools. Nevertheless, the influence of nanofillers and acid attack diffusion on wireless signals has yet to be explored. In this study, the effects of acid attack periods (i.e. one, week, two weeks, and month) on the scattering parameters of microstrip antennas ere investigated using a vector network analys. Additionally, an idealised multi-scale modelling approach was developed to study the influence of electrical conductivity and porosity volume changes on return loss (S11). The data showed that the diffusion of ions altered the specimen properties as time progressed. The increment in the electrical conductivity and porosity volume is reflected especially during the month-long period. Finally, in this study, it was found that wireless methods can be implemented to characterise materials which are beneficial for real-time in-situ structural health monitoring.

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • corrosion
  • Hydrogen
  • porosity
  • durability
  • electrical conductivity