People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Broer, Agnes A. R.
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Intelligent Health Indicators Based on Semi-supervised Learning Utilizing Acoustic Emission Datacitations
- 2023Hierarchical Upscaling of Data-Driven Damage Diagnostics for Stiffened Composite Aircraft Structures
- 2023Intelligent health indicator construction for prognostics of composite structures utilizing a semi-supervised deep neural network and SHM datacitations
- 2023An SHM Data-Driven Methodology for the Remaining Useful Life Prognosis of Aeronautical Subcomponentscitations
- 2023A novel strain-based health indicator for the remaining useful life estimation of degrading composite structurescitations
- 2022On the Challenges of Upscaling Damage Monitoring Methodologies for Stiffened Composite Aircraft Panelscitations
- 2022Assessing stiffness degradation of stiffened composite panels in post-buckling compression-compression fatigue using guided wavescitations
- 2021A Strain-Based Health Indicator for the SHM of Skin-to-Stringer Disbond Growth of Composite Stiffened Panels in Fatiguecitations
- 2021Health monitoring of aerospace structures utilizing novel health indicators extracted from complex strain and acoustic emission datacitations
- 2021Fusion-based damage diagnostics for stiffened composite panelscitations
- 2021Health indicators for diagnostics and prognostics of composite aerospace structurescitations
Places of action
Organizations | Location | People |
---|
document
Assessing stiffness degradation of stiffened composite panels in post-buckling compression-compression fatigue using guided waves
Abstract
The application of structural health monitoring (SHM) in composite airframe structural elements under long-term realistic fatigue loading needs to consider the structural behavior on the global level, which is an intricate task. The overall structural stiffness is a key design parameter for composite structures and the stiffness degradation under fatigue loading is closely related to the damage accumulation and failure mechanism which can be used as an indicator for the structural degradation. Therefore, this paper investigates the use of guided waves in axial stiffness degradation estimation for stiffened carbon fiber reinforced polymer (CFRP) composite panels under post-buckling compression-compression (C-C) fatigue loads. Impacted or artificially debonded stiffened composite panels are tested under fatigue until failure and guided waves are acquired using a network of piezoelectric (PZT) sensors at fixed cycle intervals. The guided wave phase velocity along the loading direction is extracted to estimate the axial stiffness degradation with the consideration of mode conversion and failure of PZT sensors. The estimated stiffness of five stiffened composite panels matches well with the stiffness calculated from the load–displacement curves. The estimated stiffness is also assessed using prognostic performance metrics and shows good potential for being used as a health indicator for prognostic purposes. ; Structural Integrity & Composites