People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Harkin-Jones, Eileen
Queen's University Belfast
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (46/46 displayed)
- 2022Influence of extrusion parameters on filled polyphenylsulfone tufting yarns on open-hole tensile strengthcitations
- 2022Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractionscitations
- 20223D Printed Strontium and Zinc Doped Hydroxyapatite Loaded PEEK for Craniomaxillofacial Implantscitations
- 2021Experimental Investigations of 3D Woven Layer to-Layer Carbon/Epoxy Composites at Different Strain Ratescitations
- 2021Influence of Binder Float Length on the Out-of-Plane and Axial Impact Performance of 3D Woven Compositescitations
- 2020Improved crush energy absorption in 3D woven composites by pick density modificationcitations
- 2019Influence of Textile Architecture on the Mechanical Properties of 3D Woven Carbon Composites
- 2019Comparative studies of structure property relationship between glass/epoxy and carbon/epoxy 3D woven composites
- 2019Energy Absorption Mechanisms in Layer-to-Layer 3D Woven Composites
- 2019Improved Energy Absorption in 3D Woven Composites by Weave Parameter Manipulationcitations
- 2019A unified framework for the multi-scale computational homogenisation of 3D-textile compositescitations
- 2018Multiscale Computational Homogenisation of 3D Textile-based Fiber Reinforced Polymer Composites
- 2017CHARACTERIZING BIAXIALLY STRETCHED POLYPROPYLENE/GRAPHENE NANOPLATELET COMPOSITES
- 2016Optimization and Prediction of Mechanical and Thermal Properties of Graphene/LLDPE Nanocomposites by Using Artificial Neural Networkscitations
- 2016Melt processing and properties of linear low density polyethylene-graphene nanoplatelet compositescitations
- 2016Melt processing and properties of linear low density polyethylene-graphene nanoplatelet compositescitations
- 2015Structure, mechanical, and electrical properties of high-density polyethylene/multi-walled carbon nanotube composites processed by compression molding and blown film extrusioncitations
- 2015Characterization and structure–property relationship of melt-mixed high density polyethylene/multi-walled carbon nanotube composites under extensional deformationcitations
- 2015Characterisation of melt processed nanocomposites of Polyamide 6 subjected to uniaxial-drawing
- 2015Characterisation of melt processed nanocomposites of Polyamide 6 subjected to uniaxial-drawing
- 2014Effect of cooling rate on the properties of high density polyethylene/multi-walled carbon nanotube compositescitations
- 2014Processability, structural evolution and properties of melt processed biaxially stretched HDPE/MWCNT nanocompositescitations
- 2014Process efficiency in polymer extrusion: Correlation between the energy demand and melt thermal stabilitycitations
- 2014Energy monitoring and quality control of a single screw extrudercitations
- 2014Investigation of the process energy demand in polymer extrusion: a brief review and an experimental studycitations
- 2014Low-cost Process monitoring for polymer extrusion
- 2014Effect of high temperature, biaxial stretching on the thermal and mechanical properties of HDPE/MWCNT sheetcitations
- 2012Morphology, barrier, and mechanical properties of biaxially deformed poly(ethylene terephthalate)-mica nanocompositescitations
- 2012Melt-compounded nanocomposites of titanium dioxide atomic-layer-deposition-coated polyamide and polystyrene powderscitations
- 2012The influence of processing route on the structuring and properties of high-density polyethylene (HDPE)/clay nanocomposites.citations
- 2011Multiaxial Deformation of Polyethylene and Polyethylene/Clay Nanocomposites: In Situ Synchrotron Small Angle and Wide Angle X-Ray Scattering Studycitations
- 2011The effect of temperature and strain rate on the deformation behaviour, structure development and properties of biaxially stretched PET-clay nanocompositescitations
- 2011Glass fibre-reinforced polyethylene composites in rotational moulding
- 2011Quantitative characterization of clay dispersion in polymer-clay nanocompositescitations
- 2011The effect of temperature and strain rate on the deformation behaviour, structure development and properties of biaxially stretched PET-clay nanocomposites.citations
- 2010Quantitative characterization of clay dispersion in polypropylene-clay nanocomposites by combined transmission electron microscopy and optical microscopy
- 2010Quantitative characterization of clay dispersion in polypropylene-clay nanocomposites by combined transmission electron microscopy and optical microscopycitations
- 2010Structure-property relationships in biaxially deformed polypropylene nanocompositescitations
- 2009Biaxial deformation behavior and mechanical properties of a polypropylene/clay nanocompositecitations
- 2009Rotational Molding Cycle Time Reduction Using a Combination of Physical Techniquescitations
- 2009Evolution of Clay Morphology in Polypropylene/Montmorillonite Nanocomposites upon Equi-biaxial Stretching: A Solid-State NMR and TEM Approachcitations
- 2009Characterisation of melt-processed poly(ethylene terephthalate)/syntheticmica nanocomposite sheet and its biaxial deformation behaviourcitations
- 2008Performance enhancement of polymer nanocomposites via multiscale modelling of processing and propertiescitations
- 2006The effect of cooling rate on the impact and dynamic mechanical properties of rotationally moulded metallocene catalysed linear low density polyethylenecitations
- 2005Biaxial Characterisation of Materials for Thermoforming and Blow Mouldingcitations
- 2002The Role of Tool/Sheet Contact in Plug-Assisted Thermoforming.
Places of action
Organizations | Location | People |
---|
article
Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractions
Abstract
Fused deposition modelling (FDM) is one of the most popular additive manufacturing (AM) technique which is used to investigate the elastic properties of 3D printed polyamide-based polymer composites structures. The aim of this work is to study the mechanical properties of continuous carbon fibre reinforced polyamide polymer composite samples using tensile and flexural testing by varying the fibre volume contents with applying pressure, temperature and holding the samples for 60 minutes in the platen press. The results showed that the strength and stiffness increased with the increase in fibre volume content (fraction). Hot pressed samples exhibited the increase in tensile strength by about 27 % and elastic modulus by 11 % because of increasing the fibre volume fraction from 29 % to 35%. Synergetic effect of both short and continuous carbon fibre was also studied, and it was observed that the tensile properties were higher for the samples reinforced with short and continuous fibre than only continuous fibre polymer composites. Effects of voids on 3D printed continuous carbon fibre-reinforced polymer composites were quantified. A microstructure study of the 3D printed polymer composites was carried out using scanning electron microscope (SEM). Following SEM analysis on the tested specimens, it was observed that there was a strong correlation between the mechanical properties and the microstructure. Fibre volume fraction was measured using acid digestion method to determine the amount of fibre contents before and after hot pressing (compaction). From Micro- Computed Tomography (µCT) it was confirmed that hot pressing reduced the void content which in return increased the strength and modulus.