People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Quan, Dong
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Recycled carbon fibre mats for interlayer toughening of carbon fibre/epoxy compositescitations
- 2022Co-cured carbon fibre/epoxy composite joints by advanced thermoplastic films with excellent structural integrity and thermal resistancecitations
- 2021Fatigue delamination behaviour of carbon fibre/epoxy composites interleaved with thermoplastic veilscitations
- 2020Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veilscitations
- 2020Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substratescitations
- 2020The influence of interlayer/epoxy adhesion on the mode-I and mode-II fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veilscitations
Places of action
Organizations | Location | People |
---|
article
Fatigue delamination behaviour of carbon fibre/epoxy composites interleaved with thermoplastic veils
Abstract
Interleaving thermoplastic veils has proved to enhance the interlaminar fracture toughness of carbon fibre/epoxy composites under static loading conditions. However, the fatigue delamination behaviour has yet to be investigated. Herein, meltable Polyamide-12 (PA) veils and non-meltable Polyphenylene-sulphide (PPS) veils were used for interlay toughening of unidirectional (UD) and non-crimp fabric (NCF) laminates that were manufactured using a prepreg process and resin transfer moulding process, respectively. The results of Mode-I fatigue delamination tests demonstrated a significant improvement in the fatigue life of the laminates due to interleaving. Additionally, the fatigue resistance energy has been maximumly increased by 143% and 190% for the UD and NCF laminates, respectively. The microscopy analysis revealed that the toughening mechanisms of thermoplastic veils were affected by the form of the thermoplastic veils in the laminates (melted or non-melted), the fracture mechanisms of the reference laminates and the adhesion/miscibility between the thermoplastic veils and the epoxy. ; Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. ; Structural Integrity & Composites