Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kisa, E.

  • Google
  • 1
  • 4
  • 63

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020An experimental implementation of inverse finite element method for real-time shape and strain sensing of composite and sandwich structures63citations

Places of action

Chart of shared publication
Tabrizi, Isa Emami
1 / 10 shared
Tansan, M.
1 / 1 shared
Kefal, A.
1 / 3 shared
Yildiz, M.
1 / 12 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Tabrizi, Isa Emami
  • Tansan, M.
  • Kefal, A.
  • Yildiz, M.
OrganizationsLocationPeople

article

An experimental implementation of inverse finite element method for real-time shape and strain sensing of composite and sandwich structures

  • Tabrizi, Isa Emami
  • Tansan, M.
  • Kefal, A.
  • Kisa, E.
  • Yildiz, M.
Abstract

In this study, the inverse finite element method (iFEM) is experimentally applied to real-time displacement reconstruction of a moderately thick wing-shaped sandwich structure via a network of strain sensors. For this purpose, the iFEM algorithm is incorporated to the kinematic relations of refined zigzag theory (RZT) by considering laminate mechanics of the woven-fabric reinforcement. After a twill-woven wing-shaped structure is manufactured with embedded fiber Bragg grating sensors and surface mounted strain gauges/rosettes, the discrete real-time experimental strains are acquired from these sensors concurrently during a flexural test of the structure. This data is then processed by iFEM algorithm for full-field displacement and strain monitoring. Moreover, the displacement fields at the one edge of the sandwich structure is monitored by digital image correlation (DIC) system simultaneously. Furthermore, the reference displacement solutions are established by performing high-fidelity FEM analysis. Finally, the three-dimensional real-time deformations and strains obtained through iFEM approach show very good consistency when compared to the results of DIC/FEM analysis and experimental strains, respectively. Overall, the present study serves as a comprehensive experimental guidance of iFEM-based shape and strain sensing for its realistic implementation on large-scale composite structures and notably increases technology readiness level of the iFEM methodology.

Topics
  • impedance spectroscopy
  • surface
  • theory
  • composite
  • bending flexural test
  • woven