People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ullah, Zahur
Durham University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Effects of ply hybridisation on delamination in hybrid laminates at CorTen steel/M79LT-UD600 composite interfaces
- 2024Experimental and numerical investigation of fracture characteristics in hybrid steel/composite and monolithic angle-ply laminates
- 2024Finite fracture mechanics fracture criterion for free edge delamination
- 2023A three-dimensional Finite Fracture Mechanics model for predicting free edge delamination
- 2023A computational framework for crack propagation along contact interfaces and surfaces under loadcitations
- 2023Three-dimensional semi-analytical investigation of interlaminar stresses in composite laminates
- 2023Maritime applications of fibre reinforced polymer composites
- 2023A semi-analytical method for measuring the strain energy release rates of elliptical cracks
- 2023Studies on the impact and compression-after-impact response of ‘Double-Double’ carbon-fibre reinforced composite laminates
- 2023Failure analysis of unidirectional composites under longitudinal compression considering defects
- 2023Exploring the elastic properties of woven fabric composites: a machine learning approach for improved analysis and designcitations
- 2021On the importance of finite element mesh alignment along the fibre direction for modelling damage in fibre-reinforced polymer composite laminatescitations
- 2020Hierarchical finite element-based multi-scale modelling of composite laminatescitations
- 2020Investigation of the free-edge stresses in composite laminates using three-dimensional hierarchic finite elements
- 2020A three-dimensional hierarchic finite element-based computational framework for the analysis of composite laminatescitations
- 2019A unified framework for the multi-scale computational homogenisation of 3D-textile compositescitations
- 2018Mortar Contact Formulation Using Smooth Active Set Strategy Applied to 3D Crack Propagation
- 2018Multiscale Computational Homogenisation of 3D Textile-based Fiber Reinforced Polymer Composites
- 2017Multi-scale Computational Homogenisation to Predict the Long-Term Durability of Composite Structures.citations
- 2016Multi-Scale Computational Homogenisation of the Fibre-Reinforced Polymer Composites Including Matrix Damage and Fibre-Matrix Decohesion
- 2015Hierarchical Finite Element Based Multiscale Computational Homogenisation of Coupled Hygro-Mechanical Analysis for Fibre-Reinforced Polymers
- 2015Multiscale computational homogenisation to predict the long-term durability of composite structures
- 2014Computational homogenisation of fibre reinforced composites
Places of action
Organizations | Location | People |
---|
article
A three-dimensional hierarchic finite element-based computational framework for the analysis of composite laminates
Abstract
A three-dimensional hierarchic finite element-based computational framework is developed for the investigation of inter-laminar stresses and displacements in composite laminates of finite width. As compared to the standard finite elements, hierarchic finite elements allow to change the order of approximation both locally and globally without modifying the underlying finite element mesh leading to very accurate results for relatively coarse meshes. In this paper, both symmetric cross-ply and angle-ply laminates subjected to uniaxial tension are considered as test cases. Tetrahedral elements are used for the discretisation of laminates and uniform or global p-refinement is used to increase the order of approximation. Each ply within laminates is modelled as a linear-elastic, homogenous and orthotropic material. With increasing the order of approximation, the developed computational framework is able to capture the complex profiles of inter-laminar stresses and displacements very accurately. Results are compared with reference results from the literature and found in a very good agreement. The computational model is implemented in our in-house finite element software libraryMesh-Oriented Finite Element Method (MoFEM). The computational framework has additional flexibly of high-performance computing and makes use of the state-of-the-art computational libraries including Portable, Extensible Toolkit for Scientific Computation (PETSc) and the Mesh-Oriented datABase (MOAB).