Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guedes, Jm

  • Google
  • 2
  • 6
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Optimization of the microstructure of unidirectional hybrid composites under uniaxial tensile loads4citations
  • 2018Optimization of hybrid polymer composites under uniaxial traction1citations

Places of action

Chart of shared publication
Coelho, Pg
2 / 2 shared
Conde, Fm
2 / 2 shared
Rodrigues, Hc
2 / 2 shared
Camanho, Pp
1 / 229 shared
Tavares, Rp
2 / 12 shared
Camanho, Pc
1 / 1 shared
Chart of publication period
2020
2018

Co-Authors (by relevance)

  • Coelho, Pg
  • Conde, Fm
  • Rodrigues, Hc
  • Camanho, Pp
  • Tavares, Rp
  • Camanho, Pc
OrganizationsLocationPeople

article

Optimization of the microstructure of unidirectional hybrid composites under uniaxial tensile loads

  • Coelho, Pg
  • Conde, Fm
  • Rodrigues, Hc
  • Camanho, Pp
  • Guedes, Jm
  • Tavares, Rp
Abstract

Typical composite structures are characterized by having brittle failure and thus higher safety factors. Alternatively, hybrid composites with pseudo-ductile behaviour can contribute to safer and more efficient designs. The objective of this work is to achieve a "pseudo-ductile" behaviour in the response of unidirectional hybrid composites when subjected to uniaxial traction. To understand under what circumstances such behaviour is obtained, optimization problems are formulated and solved here. A Spring Element Model is used to predict the hybrid composite failure with relatively low computational cost. This cost is an important issue since optimization requires several analyses of the composite response. Two different types of optimization problems are considered. Firstly, one finds out the optimal properties of fibres to hybridize and get the pseudo-ductile behaviour. Once an optimal hybridization is found, another optimization problem is solved in order to understand the influence of the fibre dispersion on the composite response. Both optimization problems are solved using a Genetic Algorithm. The optimal results obtained show hybrid composites having a considerable pseudo-ductile behaviour. It is also shown that the degree of spatial fibre dispersion at the composite microstructure level greatly affects the composite response. High fibre dispersion favours the pseudo-ductile behaviour.

Topics
  • impedance spectroscopy
  • dispersion
  • composite