People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Menshykov, Oleksandr
University of Aberdeen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Novel computational model for the failure analysis of composite pipes under bendingcitations
- 2023Failure Analysis of Composite Pipes Subjected to Bending
- 2023Mechanical Analysis of Thick-walled Filament Wound Composite Pipes under Pure Torsion Loadcitations
- 2022Enhancing the behaviour of broom-strands reinforced concrete using hose-clampscitations
- 2022Behaviour of clamp-enhanced palm tendons reinforced concretecitations
- 2021Bond Behaviour of Oil Palm Broom Fibres in Concrete for Eco-friendly Constructioncitations
- 2021Failure Analysis of Multi-Layered Thick-Walled Composite Pipes Subjected to Torsion Loadingcitations
- 2019Analysis of flexible composites for coiled tubing applicationscitations
- 2017Numerical modelling of layered composite pipes under bending and pressure
- 2007Elastodynamics of interface cracks in laminated composites
- 2006Analysis of critical strains and loads in layered composites
- 2005Interfacial plane crack under time-harmonic loading
Places of action
Organizations | Location | People |
---|
article
Analysis of flexible composites for coiled tubing applications
Abstract
The present paper investigates thick-walled composite pipes subjected to simultaneous multi-axial loads common to those experienced in coiled tubing applications. The pipes were assumed to be filament wound carbon fiber-epoxy laminates with multiple layers and variable fiber orientations. MATLAB-based software was used to calculate stresses and carry out failure analyses through the thickness of the pipes when subjected to pressure, axial and bending (spooling) loads. Analyses were performed to determine if the composite tubes could achieve comparable strengths and spooling diameters as equivalent steel tube geometries.