People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Machado, Jjm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023A butt shear joint (BSJ) specimen for high throughput testing of adhesive bondscitations
- 2021Determination of fracture toughness of an adhesive in civil engineering and interfacial damage analysis of carbon fiber reinforced polymer-steel structure bonded jointscitations
- 2020Displacement rate effect in the fracture toughness of glass fiber reinforced polyurethanecitations
- 2020Geometrical optimization of adhesive joints under tensile impact loads using cohesive zone modellingcitations
- 2020Numerical study of mode I fracture toughness of carbon-fibre-reinforced plastic under an impact loadcitations
- 2020Numerical study of similar and dissimilar single lap joints under quasi-static and impact conditionscitations
- 2020Experimental and numerical study of the dynamic response of an adhesively bonded automotive structurecitations
- 2019Fatigue performance of single lap joints with CFRP and aluminium substrates prior and after hygrothermal agingcitations
- 2019Adhesive joint analysis under tensile impact loads by cohesive zone modellingcitations
- 2019Dynamic behaviour in mode I fracture toughness of CFRP as a function of temperaturecitations
- 2019A strategy to reduce delamination of adhesive joints with composite substratescitations
- 2018Improvement in impact strength of composite joints for the automotive industrycitations
- 2018Adhesives and adhesive joints under impact loadings: An overviewcitations
- 2018Mechanical behaviour of adhesively bonded composite single lap joints under quasi-static and impact conditions with variation of temperature and overlapcitations
- 2018Numerical study of the behaviour of composite mixed adhesive joints under impact strength for the automotive industrycitations
- 2018Adhesive thickness influence on the shear fracture toughness measurements of adhesive jointscitations
- 2017Mode II fracture toughness of CFRP as a function of temperature and strain ratecitations
- 2017Mode I fracture toughness of CFRP as a function of temperature and strain ratecitations
- 2017Dynamic behaviour of composite adhesive joints for the automotive industrycitations
Places of action
Organizations | Location | People |
---|
article
Adhesive joint analysis under tensile impact loads by cohesive zone modelling
Abstract
The use of bonded joints in industrial applications has been increasing in recent years, to the detriment of traditional bonding methods such as welding, brazing, and bolted and riveted joints. In many practical situations, such as vehicle crashes, adhesive joints are subjected to impact loads. However, the knowledge on the joint behaviour for this loading is much less addressed in the literature that the typically studied static case. This work focuses on a numerical study, through cohesive zone modelling (CZM), of tensile loaded joints in impact scenarios with three adhesives with distinct properties. Initial comparison with experimental data was undertaken. The single-lap joint (SLJ) geometry was chosen as it is the most used bonded joint. Three-dimensional (3D) modelling and different adherend materials, including carbon-fibre reinforced plastic (CFRP), were evaluated as well. The numerical technique showed a good correspondence to the test results. The CZM analysis enabled finding the best set of material/adhesive conditions to provide the best results under impact loadings.