People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sobey, Adam
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2020The impact of corrosion-stress interactions on the topological features and ultimate strength of large-scale steel structurescitations
- 2019Modelling the variability of skin stiffener debonding in post-cured top-hat stiffened panelscitations
- 2019Mechanical and dynamic performance of woven flax/E-glass hybrid compositescitations
- 2018Ultimate strength assessment of plated steel structures with random pitting corrosion damagecitations
- 2017Investigating the transient response of hybrid composite materials reinforced with flax and glass fibres
- 2016A review on design, manufacture and mechanics of composite riserscitations
- 2015Investigation into skin stiffener debonding of top-hat stiffened composite structurescitations
- 2015Reliability analysis of natural composite for marine structures
- 2013The application of reliability methods in the design of tophat stiffened composite panels under in-plane loadingcitations
Places of action
Organizations | Location | People |
---|
article
Modelling the variability of skin stiffener debonding in post-cured top-hat stiffened panels
Abstract
Glass structures are often used in industries utilising large structural topologies. These structures are typically manufactured by post-curing subcomponents together, using a chopped strand mat layer at the interface. To predict failure of these joints requires an accurate assessment of the material and fracture properties. In this paper two industrially manufactured top-hat stiffened panels are tested to determine the fracture behaviour at the component level. This highlights that the variability seen in fracture properties at coupon level is less evident in structural component response. Then a previously developed set of material properties is used to accurately model the structural response, crack initiation and debonding of the panels under four point bend using Finite Element Analysis which gives final failure at 6.2kN and a 4.4% error compared to the experimental results which exhibits final failure at 5.94kN. The specific fracture properties tested and R curve are shown to be critical in assessing crack initiation and propagation with considerable error, 14.5%, provided by data assumed from the literature.