People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pasternak, Elena
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Implication of Different Types of Post-peak Behaviour in Lateral Direction on Failure of Class II Rocks in Uniaxial Compressioncitations
- 2022Possible mechanism of spallation in rock samples under uniaxial compressioncitations
- 2019Effective properties of layered auxetic hybridscitations
- 2017Behavior of Extreme Auxetic and Incompressible Elastic Materialscitations
- 2017Extracting real-crack properties from non-linear elastic behaviour of rockscitations
- 2017Transitional negative stiffness and numerical modelling of failure of particulate material
- 2017Extracting shear and normal compliances of crack-like defects from pressure dependences of elastic-wave velocitiescitations
- 2016Wave propagation in materials with negative Cosserat shear moduluscitations
- 2016Deformation analysis of reinforced-core auxetic assemblies by close-range photogrammetrycitations
- 2016Thermal stresses in hybrid materials with auxetic inclusionscitations
- 2015Negative Poisson's ratio in hollow sphere materialscitations
- 2015Hybrid materials with negative Poisson's ratio inclusionscitations
- 2007Percolation mechanism of failure of a planar assembly of interlocked osteomorphic elementscitations
- 2006Cracks of higher modes in Cosserat continuacitations
- 2004On the possibility of elastic strain localisation in a faultcitations
Places of action
Organizations | Location | People |
---|
article
Effective properties of layered auxetic hybrids
Abstract
<p>In this paper, we study the effective thermo-elastic properties of hybrid materials containing layered auxetic microstructures. We consider three types of arrangements: (1) hybrids with randomly distributed plate-like inclusions possessing the negative Poisson's ratio and negative thermal expansion coefficient, (2) sandwich structures with auxetic cores and (3) laminates with randomly arranged and ordered auxetic and negative thermal expansion layers. We evaluate the effective characteristics of these hybrids by analysing representative volume elements using the finite element method. We observe that the plate-like auxetic inclusions increase the effective stiffness of the hybrid. This stiffening effect was previously reported for spherical and cubic auxetic inclusions and is further investigated in this study. We demonstrate that the aspect ratio of the plate-like shapes has strong influence on this stiffening effect: the decrease in the aspect ratio reduces stiffening in the direction parallel to the layers and enhances it in the direction perpendicular to them. In the auxetic laminates, the stiffening effect strengths with the increase in the number of auxetic layers. We also show that thinner inclusions provide lower effective linear coefficient of thermal expansion (CTE) in the direction parallel to the layering and higher effective CTE in the direction perpendicular to it.</p>