People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Donadon, Maurício V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2019Translaminar fracture toughness and fatigue crack growth characterization of carbon-epoxy plain weave laminatescitations
- 2019Experimental Characterization of Mode I Interlaminar Fracture Toughness in Low-Melt Paek Thermoplastic Composite Material
- 2019Hygrothermal effects on mode II interlaminar fracture toughness of co-bonded and secondary bonded composites jointscitations
- 2018Strain rate effects on the intralaminar fracture toughness of composite laminates subjected to compressive loadcitations
- 2018An experimental investigation of trailing-edge noise reduction due to elasticity
- 2018Strain rate effects on the intralaminar fracture toughness of composite laminates subjected to tensile loadcitations
- 2017Aeroelastic behavior of stiffened composite laminated panel with embedded SMA wire using the hierarchical Rayleigh–Ritz methodcitations
- 2017Assembly of semi-analytical models to address linear buckling and vibration of stiffened composite panels with debonding defectcitations
- 2016Flutter of stiffened composite panels considering the stiffener's base as a structural elementcitations
Places of action
Organizations | Location | People |
---|
article
Strain rate effects on the intralaminar fracture toughness of composite laminates subjected to tensile load
Abstract
This paper presents a numerical and experimental study on the intralaminar tensile fracture toughness of carbon fiber reinforced composite subjected to high strain rates. As there is no standardized testing procedures for intralaminar fracture toughness characterization of composites at high strain rates, there is a clear need to design specimen geometries, testing apparatus and data reduction schemes that allows the characterization of the fracture toughness of composites in the dynamic regime. Initially numerical studies were performed based on finite element simulations in order to investigate the viability of its construction for different testing configurations to characterize the intralaminar toughness of composite laminates. A comparative study is presented showing the advantages and disadvantages of each testing configuration. A new data reduction scheme based on modifications in the ASTM standard, accounting for material anisotropy and specimen finite geometry effects is suggested. Experimental tests were carried out, using the proposed specimen configuration at different strain rates in order to investigate the strain rate effects using a modified version of the Split Hopkinson Pressure Bar. Fractography analyses using Scanning Electron Microscopy(SEM) have been also performed in order to investigate the strain rate effects on the failures mechanisms of the composite material studied herein.