Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yoo, J.

  • Google
  • 2
  • 10
  • 96

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Topology optimization for continuous and discrete orientation design of functionally graded fiber-reinforced composite structures96citations
  • 2011THE EFFECT OF THE DIFFERENTIATION STAGE OF AMNIOTIC FLUID STEM CELLS SEEDED ONTO BIODEGRADABLE SCAFFOLDS IN THE REGENERATION OF NON-UNION DEFECTScitations

Places of action

Chart of shared publication
Kim, D.
1 / 13 shared
Dede, E. M.
1 / 1 shared
Nomura, T.
1 / 2 shared
Shiner, T.
1 / 1 shared
Atala, A.
1 / 6 shared
Rodrigues, M. T.
1 / 44 shared
Lee, B. K.
1 / 1 shared
Reis, Rui Luís
1 / 1359 shared
Gomes, M. E.
1 / 196 shared
Lee, S. J.
1 / 7 shared
Chart of publication period
2018
2011

Co-Authors (by relevance)

  • Kim, D.
  • Dede, E. M.
  • Nomura, T.
  • Shiner, T.
  • Atala, A.
  • Rodrigues, M. T.
  • Lee, B. K.
  • Reis, Rui Luís
  • Gomes, M. E.
  • Lee, S. J.
OrganizationsLocationPeople

article

Topology optimization for continuous and discrete orientation design of functionally graded fiber-reinforced composite structures

  • Kim, D.
  • Yoo, J.
  • Dede, E. M.
  • Nomura, T.
Abstract

This paper presents a topology optimization method for the sequential design of material layout and fiber orientation in functionally graded fiber-reinforced composite structures. Specifically, the proposed method can find the optimal structural layout of matrix and fiber materials together with optimal discrete fiber orientations. In this method, an orientation design variable in the Cartesian coordinate system is employed with a conventional density design variable. The orientation design variable controls not only the fiber orientation, but also fiber volume fraction. The fiber volume fraction control can be used to relax the orientation design problem and simultaneously design a functionally graded structural layout of fiber material. To avoid intermediate fiber orientations and achieve discrete fiber orientation design, a penalization scheme is applied to the orientation design variable. For solving the optimization problem which involves multiple design variables such as the density variable, fiber orientation variable, and target discrete orientation set, a three-step sequential optimization procedure is proposed. In this procedure, the result for each step provides the isotropic design, continuous fiber orientation design, and functionally graded discrete orientation design, respectively. To validate the effectiveness of the proposed approach, numerical examples for structural compliance minimization and compliant mechanism design are provided.

Topics
  • density
  • impedance spectroscopy
  • isotropic
  • fiber-reinforced composite