People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alderliesten, René
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (44/44 displayed)
- 2024A new interpretation of mode I interlaminar fracture in layered materialscitations
- 2024Planar delamination behaviour of CFRP panels under quasi-static out-of-plane loadingcitations
- 2024Effect of pre-existing damage on delamination growth in repeatedly indented compositescitations
- 2024Planar Delamination Growth Of Composite Laminates Under Mode II Fatigue Loading
- 2024FLAx-REinforced Aluminum (FLARE)citations
- 2024Pre-straining as an effective strategy to mitigate ratcheting during fatigue in flax FRP composites for structural applications
- 2024Enhancing Fatigue Performance Of Structural Biocomposites By Pre-Straining And Pre-Creeping Methods
- 2023Towards understanding residual strength and damage evolution in damaged composite laminates
- 2023In-service delaminations in FRP structures under operational loading conditions: Are current fracture testing and analysis on coupons sufficient for capturing the essential effects for reliable predictions?citations
- 2023Investigation of compression after impact failure in carbon fiber reinforced polymers using acoustic emissioncitations
- 2023Assessment of two quasi-static approaches to mimic repeated impact response and damage behaviour of CFRP laminatescitations
- 2023Delamination link-ups in composite laminates due to multiple hail impactscitations
- 2023Experimental investigation of planar delamination behaviour of composite laminates under Out-Of-Plane loading
- 2023Flax fibre metal laminates (FLARE): A bio-based FML alternative combining impact resistance and vibration damping?
- 2023Effects of different joint wall lengths on in-plane compression properties of 3D braided jute/epoxy composite honeycombscitations
- 2023Compression after impact fatigue damage growth in CFRP – what does no-growth really mean?
- 2023Influence of neighbouring damage on delamination growth in multiple indented compositescitations
- 2022Applying the new experimental midpoint concept on strain energy density for fracture assessment of composite materialscitations
- 2022Delamination initiation in fully clamped rectangular CFRP laminates subjected to out-of-plane quasi-static indentation loadingcitations
- 2022Measurement of damage growth in ultrasonic spot welded joint
- 2022Do standard delamination tests relate to planar delamination growth?
- 2022Recycled carbon fibre mats for interlayer toughening of carbon fibre/epoxy compositescitations
- 2022A criterion for predicting delamination growth in composite laminatescitations
- 2022How literature reviews influence the selection of fatigue analysis framework
- 2022Co-cured carbon fibre/epoxy composite joints by advanced thermoplastic films with excellent structural integrity and thermal resistancecitations
- 2021Loading rate dependency of strain energy release rate in mode I delamination of composite laminatescitations
- 2021Fatigue delamination behaviour of carbon fibre/epoxy composites interleaved with thermoplastic veilscitations
- 2020Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veilscitations
- 2020Loading rate effects on mode-I delamination in glass/epoxy and glass/CNF/epoxy laminated compositescitations
- 2020The effect of bond-line thickness on fatigue crack growth rate in adhesively bonded jointscitations
- 2020Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substratescitations
- 2020The influence of interlayer/epoxy adhesion on the mode-I and mode-II fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veilscitations
- 2020The effect of temperature on fatigue strength of poly(ether-imide)/multiwalled carbon nanotube/carbon fibers composites for aeronautical applicationcitations
- 2019Development of a physics-based theory for mixed mode I/II delamination onset in orthotropic laminatescitations
- 2019Physics of delamination onset in unidirectional composite laminates under mixed-mode I/II loadingcitations
- 2019Fatigue in fibre metal laminatescitations
- 2018Cyclic fatigue fracture of compositescitations
- 2018Delamination fatigue growth in polymer-matrix fibre compositescitations
- 2018The Challenge of Reversing Theories to Hybridize Structures with Fiber Metal Laminate Design Conceptscitations
- 2018The stress ratio effect on plastic dissipation during fatigue crack growthcitations
- 2018A new mixed mode I/II failure criterion for laminated composites considering fracture process zonecitations
- 2017Understanding mixed-mode cyclic fatigue delamination growth in unidirectional compositescitations
- 2016Experimental investigation of the microscopic damage development at mode i fatigue delamination tips in carbon/epoxy laminatescitations
- 2002Fatigue of Fiber Metal Laminates
Places of action
Organizations | Location | People |
---|
article
Delamination fatigue growth in polymer-matrix fibre composites
Abstract
<p>The introduction, originally in 2009, by the FAA of a ‘slow growth’ approach to the certification of polymer-matrix fibre composites has focused attention on the experimental data and the analytical tools needed to assess the growth of delaminations under cyclic-fatigue loads. Of direct relevance is the fact that fatigue tests on aircraft composite components and structures reveal that no, or only little, retardation of the fatigue crack growth (FCG) rate occurs as delamination/impact damage grows. Therefore, of course, the FCG data that are ascertained in laboratory tests, and then employed as a material-allowable property to design and life the structure, as well as for the development, characterisation and comparison of composite materials, must also exhibit no, or only minimal, retardation. Now, in laboratory tests the double-cantilever beam (DCB) test, using a typical carbon-fibre reinforced-plastic (CFRP) aerospace composite, is usually employed to obtain fracture-mechanics data under cyclic-fatigue Mode I loading. However, it is extremely difficult to perform such DCB fatigue tests without extensive fibre-bridging developing across the crack faces. This fibre-bridging leads to significant retardation of the FCG rate. Such fibre-bridging, and hence retardation of the FCG, is seen to arise even for the smallest values of the pre-crack extension length, a<sub>p</sub> − a<sub>0</sub>, that are typically employed. The results from the DCB tests also invariably exhibit a relatively large degree of inherent scatter. Thus, a methodology is proposed for predicting an ‘upper-bound’ FCG curve from the laboratory test data which is representative of a composite laminate exhibiting no, or only very little, retardation of the FCG rate under fatigue loading and which takes into account the inherent scatter. To achieve this we have employed a novel methodology, based on using a variant of the Hartman-Schijve equation, to access this ‘upper-bound’ FCG rate curve, which may be thought of as a material-allowable property and which is obtained using an ‘A basis’ statistical approach. Therefore, a conservative ‘upper-bound’ FCG curve may now be calculated from the DCB laboratory test data for material development, characterisation and comparative studies, and for design and lifing studies.</p>