People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ostachowicz, Wiesław
Polish Academy of Sciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Deep learning for automatic assessment of breathing-debonds in stiffened composite panels using non-linear guided wave signalscitations
- 2022Shear Strain Singularity-Inspired Identification of Initial Delamination in CFRP Laminates: Multiscale Modulation Filter for Extraction of Damage Features
- 2022Electromechanical impedance based debond localisation in a composite sandwich structurecitations
- 2021Extended Non-destructive Testing for the Bondline Quality Assessment of Aircraft Composite Structurescitations
- 2021Adhesive Bonding of Aircraft Composite Structures
- 2020Nonlinear elastic wave propagation and breathing-debond identification in a smart composite structurecitations
- 2019Nondestructive analysis of core-junction and joint-debond effects in advanced composite structurecitations
- 2019Ultrasonic Lamb wave-based debonding monitoring of advanced honeycomb sandwich composite structurescitations
- 2019Effects of debonding on Lamb wave propagation in a bonded composite structure under variable temperature conditionscitations
- 2019Ultrasonic guided wave propagation in a repaired stiffened composite panelcitations
- 2019Damage-induced acoustic emission source monitoring in a honeycomb sandwich composite structurecitations
- 2018Damage-induced acoustic emission source identification in an advanced sandwich composite structurecitations
- 2018Online detection of barely visible low-speed impact damage in 3D-core sandwich composite structurecitations
- 2015Embedded Damage Localization Subsystem Based on Elastic Wave Propagationcitations
- 2014Calibration Problem of AD5933 Device for Electromechanical Impedance Measurements
- 2014Damage Detection in Composites by Noncontact Laser Ultrasonic
- 2013Embedded Signal Processing Subsystem for SHM
Places of action
Organizations | Location | People |
---|
article
Online detection of barely visible low-speed impact damage in 3D-core sandwich composite structure
Abstract
<p>3D-core sandwich composites are novel lightweight construction materials being used heavily in defense, aerospace, marine, and automobile industries. In spite of the many commendable advantages, the 3D-core sandwich composite structures are prone to barely visible low-speed impact damages that may significantly jeopardize the safety and integrity of the structural assembly. The aim of this paper is to develop an advanced structural health monitoring framework to efficiently identify such damages in the sandwich structure using ultrasonic guided wave propagation. Theoretical analysis, numerical simulations and laboratory experiments of guided wave propagation in 3DCSCS have been carried out to demonstrate the effectiveness of the identification of barely visible impact damages. It is found that the presence of such damage regions significantly magnifies the fundamental antisymmetric mode of the propagating signals. The 3D numerical simulation gives physical insight and a good agreement has been observed with experimental results which affirms our understanding of the effect of damage on the propagating waves. The impact damage regions in the sandwich structure are experimentally identified using a modified signal difference algorithm based health monitoring framework. The proposed structural monitoring framework is found to be significantly efficient for the detection of impact damages in a sandwich structure.</p>