People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tita, Volnei
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Assessing critical fracture energy in mode I for bonded composite joints: A numerical–experimental approach with uncertainty analysiscitations
- 2024Multiscale modelling of composite laminates with voids through the direct FE 2 methodcitations
- 2024On the experimental determination and prediction of damage evolution in composites via cyclic testingcitations
- 2022A finite element unified formulation for composite laminates in bending considering progressive damagecitations
- 2022A finite element unified formulation for composite laminates in bending considering progressive damagecitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2017Stacking sequence optimization in composite tubes under internal pressure based on genetic algorithm accounting for progressive damagecitations
- 2017Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compressioncitations
- 2017Erratum to ‘‘Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compression” [Compos Struct 160 (2017) 204–210] (S0263822316313083)(10.1016/j.compstruct.2016.10.036)
- 2016Damage and failure in carbon/epoxy filament wound composite tubes under external pressurecitations
- 2015Progressive failure analysis of filament wound composite tubes under internal pressure
- 2015Progressive failure analysis of filament wound composite tubes under internal pressure
- 2014Experimental analyses of metal-composite bonded joints: damage identification
Places of action
Organizations | Location | People |
---|
article
Stacking sequence optimization in composite tubes under internal pressure based on genetic algorithm accounting for progressive damage
Abstract
<p>Due to the large number of design variables for laminate composite structures, the use of an optimum stacking sequence is a key step in the design of a structure with the most suitable mechanical properties. This work presents a genetic algorithm (GA) for the optimization of the stacking sequence to improve strength of a cylindrical shell under internal pressure. The GA is associated to a meso-scale damage model, which was written in Fortran and later linked to a Finite Element (FE) package to simulate composite damage and failure. Two scenarios were considered: i) without restriction, where an ideal situation is simulated; and ii) with manufacturing restrictions, accounting for limitations on feasible winding angles. The results show that progressive failure analysis generates asymmetric and unbalanced laminates in both cases. Furthermore, the simulations with manufacturing restrictions present internal pressure strengths lower than the idealized case, providing more realistic results.</p>