People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spadea, Saverio
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022Digital design of automatically wound shear reinforcement for non-prismatic concrete beams
- 2021Evaluation of low carbon mortar matrices reinforced with natural fibres
- 2020An experimental and numerical study to evaluate the crack path under mixed mode loading on pvc foamscitations
- 2020A moving interface finite element formulation to predict dynamic edge debonding in FRP-strengthened concrete beams in service conditionscitations
- 2020Automated Framework for the Optimisation of Spatial Layouts for Concrete Structures Reinforced with Robotic Filament Windingcitations
- 2019Pedestrian Bridge as Clarifying Example of FRP-RC/PC Design
- 2019A numerical model based on ALE formulation to predict crack propagation in sandwich structurescitations
- 2018Pseudo-ductile Failure of Adhesively Joined GFRP Beam-Column Connections:An Experimental and Numerical Investigationcitations
- 2018Shear Behavior of Variable-Depth Concrete Beams with Wound Fiber-Reinforced Polymer Shear Reinforcementcitations
- 2018Development of new FRP reinforcement for optimized concrete structurescitations
- 2017Wound FRP shear reinforcement for concrete structurescitations
- 2017Bend-strength of novel filament wound shear reinforcementcitations
- 2017Filament winding fabrication of FRP reinforcement cages
- 2017Development of new FRP reinforcement for optimized concrete structures
- 2015Shear strength of FRP reinforced concrete members with stirrupscitations
- 2015Recycled nylon fibers as cement mortar reinforcementcitations
- 2015On the flexural behaviour of GFRP beams obtained by bonding simple panels:An experimental investigationcitations
- 2014Macro-scale analysis of local and global buckling behavior of T and C composite sectionscitations
- 2014Effectiveness of FRP stirrups in concrete beams subject to shear
- 2013Experimental analysis on the time-dependent bonding of FRP laminates under sustained loadscitations
Places of action
Organizations | Location | People |
---|
article
Bend-strength of novel filament wound shear reinforcement
Abstract
© 2017 The winding of Fibre Reinforced Polymer (FRP) tows around longitudinal reinforcing bars provides a novel method for the fabrication of reinforcement cages. Complex geometries of internal reinforcement can be fabricated using this technique, a particular advantage for the construction of optimised concrete beams. A key limitation on the contribution of FRP to the shear capacity of a concrete member is found at corners, where the presence of stress concentrations in different directions can lead to premature failure. A new test methodology was developed to allow for rapid testing of the samples as well as sample re-alignment during load application, reducing the effects of eccentricities and imperfections created during their fabrication. An experimental program, comprising 30 test samples, was undertaken to assess the bend capacity of filament wound FRP (W-FRP) shear links manufactured using a carbon tow impregnated with epoxy resin. A fixed bend radius of 5 mm and six non-circular fibre cross sectional areas having different width-thickness ratios were considered. Additionally, 18 samples were tested to measure the tensile properties of the straight reinforcement. The test results indicate that W-FRP shear links exhibit improved bend strength as compared to conventional stirrups with circular sections (up to +53%), as a larger width-thickness ratio of the reinforcement provided more strength for a given cross sectional area. A good correlation between the test results and predictions of the W-FRP bend strength was observed when the specimens were modelled as a collection of transformed individual circular sections.