People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Machado, Jjm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023A butt shear joint (BSJ) specimen for high throughput testing of adhesive bondscitations
- 2021Determination of fracture toughness of an adhesive in civil engineering and interfacial damage analysis of carbon fiber reinforced polymer-steel structure bonded jointscitations
- 2020Displacement rate effect in the fracture toughness of glass fiber reinforced polyurethanecitations
- 2020Geometrical optimization of adhesive joints under tensile impact loads using cohesive zone modellingcitations
- 2020Numerical study of mode I fracture toughness of carbon-fibre-reinforced plastic under an impact loadcitations
- 2020Numerical study of similar and dissimilar single lap joints under quasi-static and impact conditionscitations
- 2020Experimental and numerical study of the dynamic response of an adhesively bonded automotive structurecitations
- 2019Fatigue performance of single lap joints with CFRP and aluminium substrates prior and after hygrothermal agingcitations
- 2019Adhesive joint analysis under tensile impact loads by cohesive zone modellingcitations
- 2019Dynamic behaviour in mode I fracture toughness of CFRP as a function of temperaturecitations
- 2019A strategy to reduce delamination of adhesive joints with composite substratescitations
- 2018Improvement in impact strength of composite joints for the automotive industrycitations
- 2018Adhesives and adhesive joints under impact loadings: An overviewcitations
- 2018Mechanical behaviour of adhesively bonded composite single lap joints under quasi-static and impact conditions with variation of temperature and overlapcitations
- 2018Numerical study of the behaviour of composite mixed adhesive joints under impact strength for the automotive industrycitations
- 2018Adhesive thickness influence on the shear fracture toughness measurements of adhesive jointscitations
- 2017Mode II fracture toughness of CFRP as a function of temperature and strain ratecitations
- 2017Mode I fracture toughness of CFRP as a function of temperature and strain ratecitations
- 2017Dynamic behaviour of composite adhesive joints for the automotive industrycitations
Places of action
Organizations | Location | People |
---|
article
Dynamic behaviour of composite adhesive joints for the automotive industry
Abstract
The automotive industry has significantly increased the use of adhesive joints in vehicle construction, which can be explained in part by the widespread adoption of composite materials and structures. The combined use of composites and bonding allows the manufacture of structures with high mechanical strength and reduced weight. However, to ensure vehicle safety, these adhesive joints must be able to sustain large impact loads, transmitting the load to the structure without damaging the joint. This work aims to study the impact behaviour of composite adhesive joints bonded with a ductile epoxy adhesive, comparing different overlap lengths. For this purpose, a characterization of the behaviour of single lap joints was performed under quasi-static and impact conditions. Dynamic tests were also performed using vibration analysis to assess the damping capabilities of the studied joints. Numerical models were developed with cohesive elements in ABAQUS (R) software, including both quasi-static and dynamic models. It was demonstrated that joints manufactured with this type of adhesives and substrates can exhibit excellent impact strength and damping capabilities. It was also shown that the behaviour of these joints can be successfully modelled using static and dynamic finite element analysis.