Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Correia, Jr

  • Google
  • 2
  • 5
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Numerical modelling of the creep behaviour of GFRP sandwich panels using the Carrera Unified Formulation and Composite Creep Modelling21citations
  • 2018Analysis of composite layered beams using Carrera unified formulation with Legendre approximation17citations

Places of action

Chart of shared publication
Ferreira, Ajm
2 / 58 shared
Castro, Lms
2 / 4 shared
Arruda, Mrt
2 / 2 shared
Garrido, M.
2 / 4 shared
Gonilha, J.
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Ferreira, Ajm
  • Castro, Lms
  • Arruda, Mrt
  • Garrido, M.
  • Gonilha, J.
OrganizationsLocationPeople

article

Numerical modelling of the creep behaviour of GFRP sandwich panels using the Carrera Unified Formulation and Composite Creep Modelling

  • Ferreira, Ajm
  • Castro, Lms
  • Arruda, Mrt
  • Garrido, M.
  • Correia, Jr
Abstract

Sandwich panels often need to be designed to sustain significant permanent loads, raising the need to accurately account for long-term creep deformation. However, the accurate prediction of creep in sandwich panels is not trivial, particularly owing to their composite multi-layered nature, the multitude of possible face and core material combinations, and the possible existence of through-thickness shear reinforcement (ribs/webs). This paper presents numerical investigations on the creep behaviour of composite sandwich panels produced by vacuum infusion with glass-fibre reinforced polymer (GFRP) faces and ribs, and polyurethane (PUR) and polyethylene terephthalate (PET) foam cores. Carrera Unified Formulation (CUF) is implemented, for the first time using 1D elements with an equivalent single layer (ESL) methodology, to model the creep response of simple and ribbed panels by adopting a Composite Creep Modelling (CCM) approach. Previous experimental results from creep tests carried out on such sandwich panels and their constituent materials are used to obtain time-dependent constitutive relations for the materials in various layers and validate the numerical results. Additionally, results from analytical beam models using Timoshenko beam theory (TBT) with multi-layered sections are used to further validate the numerical outputs obtained with CUF. The developed numerical models were able to predict the experimental creep behaviour of the full-scale sandwich panels with reasonable accuracy. Differences observed between the CUF and TBT models mainly stem from the inherent approximations concerning the shear correction factors used with TBT, which contrast with the solutions provided by CUF, where such factors do not need to be considered when higher degrees of approximation are used.

Topics
  • impedance spectroscopy
  • polymer
  • theory
  • glass
  • glass
  • layered
  • composite
  • creep
  • creep test