People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tita, Volnei
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Assessing critical fracture energy in mode I for bonded composite joints: A numerical–experimental approach with uncertainty analysiscitations
- 2024Multiscale modelling of composite laminates with voids through the direct FE 2 methodcitations
- 2024On the experimental determination and prediction of damage evolution in composites via cyclic testingcitations
- 2022A finite element unified formulation for composite laminates in bending considering progressive damagecitations
- 2022A finite element unified formulation for composite laminates in bending considering progressive damagecitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2017Stacking sequence optimization in composite tubes under internal pressure based on genetic algorithm accounting for progressive damagecitations
- 2017Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compressioncitations
- 2017Erratum to ‘‘Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compression” [Compos Struct 160 (2017) 204–210] (S0263822316313083)(10.1016/j.compstruct.2016.10.036)
- 2016Damage and failure in carbon/epoxy filament wound composite tubes under external pressurecitations
- 2015Progressive failure analysis of filament wound composite tubes under internal pressure
- 2015Progressive failure analysis of filament wound composite tubes under internal pressure
- 2014Experimental analyses of metal-composite bonded joints: damage identification
Places of action
Organizations | Location | People |
---|
article
Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compression
Abstract
<p>The focus of this study is the development of a computational model with damage to predict failure of carbon fiber/epoxy filament wound composite tubes under radial compressive loading. Numerical analysis is performed via Finite Element Method (FEM) with a damage model written as a UMAT (User Material Subroutine) and linked to commercial software. The experimental analysis carried out followed ASTM D2412-11, where the specimen is parallel-loaded by two steel-based plates. Three stacking sequences have been evaluated. Both numerical and experimental results show that the presence of hoop layers at inner and outer layers plus ±75° non-geodesic layers gives maximum compressive load to the composite tube, since the reinforcement is wound closer to the loading direction. Moreover, failure modes are predominantly delaminations, which are confirmed via numerical analyses through high in-plane shear stresses levels, and via experimental analyses through stereoscopic micrographs.</p>