People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Castro, Saullo G. P.
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Explainable Artificial Intelligence to Investigate the Contribution of Design Variables to the Static Characteristics of Bistable Composite Laminatescitations
- 2022Developing Equations for Free Vibration Parameters of Bistable Composite Plates Using Multi-Objective Genetic Programming
- 2022Developing Equations for Free Vibration Parameters of Bistable Composite Plates Using Multi-Objective Genetic Programming
- 2022Measurement of damage growth in ultrasonic spot welded joint
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Semi-analytical modelling of variable stiffness laminates with discontinuitiescitations
- 2021Circumferential and radial lamina application for natural frequencies problems
- 2020Numerical investigation of rain droplet impact on offshore wind turbine blades under different rainfall conditionscitations
- 2020A multiaxial fatigue damage model for isotropic materialscitations
- 2019Supersonic Flutter and Buckling Optimization of Tow Steered Composite Platescitations
- 2018An active-passive nonlinear finite element model for electromechanical composite morphing beams
- 2017Aeroelastic behavior of stiffened composite laminated panel with embedded SMA wire using the hierarchical Rayleigh–Ritz methodcitations
- 2017Assembly of semi-analytical models to address linear buckling and vibration of stiffened composite panels with debonding defectcitations
- 2017Panel flutter analysis and optimization of composite tow steered platescitations
- 2017Buckling of axially compressed CFRP cylinders with and without additional lateral loadcitations
- 2016Design and Manufacture of Conical Shell Structures Using Prepreg Laminatescitations
- 2016Flutter of stiffened composite panels considering the stiffener's base as a structural elementcitations
- 2015Experimental nondestructive test for estimation of buckling load on unstiffened cylindrical shells using vibration correlation techniquecitations
- 2015Investigation of Buckling Behavior of Composite Shell Structures with Cutoutscitations
- 2015Experimental and numerical estimation of buckling load on unstiffened cylindrical shells using a vibration correlation techniquecitations
- 2014Numerical characterization of imperfection sensitive composite structurescitations
- 2014Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shellscitations
- 2014Verification study on buckling behaviour of composite cylinder with eccentric supports
Places of action
Organizations | Location | People |
---|
article
Assembly of semi-analytical models to address linear buckling and vibration of stiffened composite panels with debonding defect
Abstract
<p>The substitution of conventional mechanical fasteners by adhesive joints has been advocated by the aircraft and aerospace industries due to the weight saving potential. Flaws such as debonding of the adhesive layer between the skin and the stiffener may greatly affect the structural behavior of composite panels. Within this context, this work presents a semi-analytical approach for the numerical investigation on the effects of skin-stiffener bonding flaw size on the vibration and linear buckling behavior of T-stiffened composite panels. Skin and stiffener have been modeled using an assembly of curved and flat panel components, with each domain approximated using a set of hierarchical polynomial functions. A penalty-based approach has been used to assemble the various domains and to model the debonded region between the stiffener flange base and the plate. This approach ensures full compatibility in terms of displacements and rotations between the stiffener's base top face and the panel bottom face allowing to model different skin/stiffener debonding lengths. The results obtained using the proposed semi-analytical models have been compared and verified against numerical predictions based on finite element analyses.</p>