People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pires, Fma
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023On the representativeness of polycrystalline models with transformation induced plasticitycitations
- 2022On the computational treatment of fully coupled crystal plasticity slip and martensitic transformation constitutive models at finite strainscitations
- 2022Consistent modeling of the coupling between crystallographic slip and martensitic phase transformation for mechanically induced loadingscitations
- 2021Homogenizing the Elastic Properties of Composite Material Using the NNRPIM
- 2020Torsional fretting wear experimental analysis of a R3 offshore steel against a PC/ABS blendcitations
- 2019The role of elastic anisotropy on the macroscopic constitutive response and yield onset of cubic oligo- and polycrystalscitations
- 2018Constitutive modelling of mechanically induced martensitic transformations Prediction of transformation surfacescitations
- 2016Intralaminar damage in polymer composites in the presence of finite fiber rotation: Part I - Constitutive modelcitations
- 2016Intralaminar damage in polymer composites in the presence of finite fiber rotation: Part II - Numerical analysis and validationcitations
- 2014Predicting the mechanical behavior of amorphous polymeric materials under strain through multi-scale simulationcitations
- 2014AN ALGORITHM TO GENERATE MICRO MECHANICAL MODELS COMPOSED BY CIRCULAR INCLUSIONS
- 2013A framework for product architecture and technology selection in competitive environment
- 2011A MICROMECHANICAL CONSTITUTIVE MODEL FOR DUCTILE FRACTURE: NUMERICAL TREATMENT AND CALIBRATION STRATEGY
- 2009Numerical modelling of the filament winding process
Places of action
Organizations | Location | People |
---|
article
Intralaminar damage in polymer composites in the presence of finite fiber rotation: Part I - Constitutive model
Abstract
The nonlinear behavior of fiber-reinforced composite materials is investigated in the presence of both damage evolution and fiber rotation. While damage mechanisms usually decrease the stiffness of the material and cause premature failure, fiber rotation can lead to a stiffening of the material, due to the reorientation of the fiber towards the loading direction, and delay failure. In this paper, fiber rotation is modeled by an analytical solution and incorporated in Maimi damage model. The predictions of the model with and without fiber rotation are analyzed and compared with the experimental results of IM7/8552 carbon-epoxy composite. The results show the importance of including fiber rotation in the constitutive equations and the accuracy of the overall model in predicting final failure of the specimens.