People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Adhikari, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2022Unfolding the mechanical properties of buckypaper composites: nano- to macro-scale coupled atomistic-continuum simulationscitations
- 2022Towards a novel application of wastewater-based epidemiology in population-wide assessment of exposure to volatile organic compounds.citations
- 2021Broadband dynamic elastic moduli of honeycomb lattice materials: a generalized analytical approachcitations
- 2021Voltage-dependent modulation of elastic moduli in lattice metamaterialscitations
- 2020Probing the Effective Young's Modulus of ‘Magic Angle’ Inspired Multi‐Functional Twisted Nano‐Heterostructurescitations
- 2019Probing the frequency-dependent elastic moduli of lattice materialscitations
- 2019Frequency domain homogenization for the viscoelastic properties of spatially correlated quasi-periodic latticescitations
- 2018Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructurescitations
- 2018Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructurescitations
- 2017Stochastic mechanics of metamaterialscitations
- 2017Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical propertiescitations
- 2017Metamodel based high-fidelity stochastic analysis of composite laminatescitations
- 2016Free-vibration analysis of sandwich panels with randomly irregular honeycomb corecitations
- 2016Fuzzy uncertainty propagation in composites using Gram-Schmidt polynomial chaos expansioncitations
- 2016Probabilistic analysis and design of HCP nanowirescitations
- 2016Pullout strength of graphene and carbon nanotube/epoxy compositescitations
- 2016Effective in-plane elastic properties of auxetic honeycombs with spatial irregularitycitations
- 2016Equivalent in-plane elastic properties of irregular honeycombs: an analytical approachcitations
- 2016Equivalent in-plane elastic properties of irregular honeycombscitations
- 2016Bottom up surrogate based approach for stochastic frequency response analysis of laminated composite platescitations
- 2015Stochastic natural frequency of composite conical shellscitations
- 2010Nanocomposites with auxetic nanotubescitations
- 2010Vibration and symmetry-breaking of boron nitride nanotubescitations
- 2009Effective elastic mechanical properties of single layer graphene sheetscitations
Places of action
Organizations | Location | People |
---|
article
Bottom up surrogate based approach for stochastic frequency response analysis of laminated composite plates
Abstract
This paper presents an efficient uncertainty quantification (UQ) scheme for frequency responses of laminated composite plates. A bottom up surrogate based approach is employed to quantify the variability in free vibration responses of composite cantilever plates due to uncertainty in ply orientation angle, elastic modulus and mass density. The finite element method is employed incorporating effects of transverse shear deformation based on Mindlin's theory in conjunction with a random variable approach. Parametric studies are carried out to determine the stochastic frequency response functions (SFRF) along with stochastic natural frequencies and modeshapes. In this study, a surrogate based approach using General High Dimensional Model Representations (GHDMR) is employed for achieving computational efficiency in quantifying uncertainty. Subsequently the effect of noise is investigated in GHDMR based UQ algorithm. This paper also presents an uncertainty quantification scheme using commercial finite element software (ANSYS) and thereby comparative results of stochastic natural frequencies are furnished for UQ using GHDMR approach and ANSYS.