Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guimarães, Thiago A. M.

  • Google
  • 3
  • 4
  • 99

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Supersonic Flutter and Buckling Optimization of Tow Steered Composite Plates42citations
  • 2017Panel flutter analysis and optimization of composite tow steered plates29citations
  • 2016Flutter of stiffened composite panels considering the stiffener's base as a structural element28citations

Places of action

Chart of shared publication
Castro, Saullo G. P.
3 / 27 shared
Rade, Domingos A.
3 / 3 shared
Cesnik, Carlos E. S.
2 / 2 shared
Donadon, Maurício V.
1 / 9 shared
Chart of publication period
2019
2017
2016

Co-Authors (by relevance)

  • Castro, Saullo G. P.
  • Rade, Domingos A.
  • Cesnik, Carlos E. S.
  • Donadon, Maurício V.
OrganizationsLocationPeople

article

Flutter of stiffened composite panels considering the stiffener's base as a structural element

  • Castro, Saullo G. P.
  • Rade, Domingos A.
  • Guimarães, Thiago A. M.
  • Donadon, Maurício V.
Abstract

<p>Flutter in aeronautical panels is a type of self-excited oscillation which can occur during supersonic flights. At the flutter point the vibrations of the panel become unstable and increase significantly in time. This manuscript presents a semi-analytical model taking into account the stiffener's base effects, in order to predict the aeroelastic response of laminated composite stiffened panels under supersonic flow. Krumhaar's modified supersonic piston theory, which considers the radius effect, is adopted to model the aerodynamic loading. The proposed model has been validated against results available in the literature for various configurations. A parametric study considering different panels and stiffener configurations is also presented. The numerical results indicate that the stiffener base significantly affects the panel aeroelastic behavior. Preliminary studies also indicate that redistributing the laminate plies from the stiffener's flange to its base significantly increases the torsion stiffness of the panel locally, opening new design possibilities that may lead to higher critical flutter speeds and therefore to better designs. The results also indicate that designs with plies distributed on the base may lead to a better flutter performance when the airflow is transverse to the longitudinal stiffener direction.</p>

Topics
  • impedance spectroscopy
  • theory
  • composite