People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ivanov, Dmitry S.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Novel cellular coil design for improved temperature uniformity in inductive heating of carbon fibre compositescitations
- 2023A comprehensive modelling framework for defect prediction in automated fibre placement of composites
- 2023Manufacturing Multi-Matrix Composites
- 2023Steering Potential for Printing Highly Aligned Discontinuous Fibre Composite Filamentcitations
- 2022A MODELLING FRAMEWORK FOR THE EVOLUTION OF PREPREG TACK UNDER PROCESSING CONDITIONS
- 2022HIGHLY ALIGNED DISCONTINUOUS FIBRE COMPOSITE FILAMENTS FOR FUSED DEPOSITION MODELLING: OPEN-HOLE CASE STUDY
- 2022Understanding tack behaviour during prepreg-based composites’ processingcitations
- 2021On the physical relevance of power law-based equations to describe the compaction behaviour of resin infused fibrous materialscitations
- 2021Modelling compaction behavior of toughened prepreg during automated fibre placement
- 2021Hypo-viscoelastic modelling of in-plane shear in UD thermoset prepregscitations
- 2020Experimental characterisation of the in-plane shear behaviour of UD thermoset prepregs under processing conditionscitations
- 2019Modelling of the in-plane shear behavior of uncured thermoset prepreg
- 2019A numerical study of variability in the manufacturing process of thick composite partscitations
- 2019Machine-driven experimentation for solving challenging consolidation problems
- 2019Mitigating forming defects by local modification of dry preformscitations
- 2019Matrix-graded and fibre-steered composites to tackle stress concentrationscitations
- 2018Experimental Characterisation of In-plane Shear Behaviour of Uncured Thermoset Prepregs
- 2018Multi-scale modelling of non-uniform consolidation of uncured toughened unidirectional prepregscitations
- 2017Positioning and aligning CNTs by external magnetic field to assist localised epoxy curecitations
- 2017Ductility potential of brittle epoxies:Thermomechanical behaviour of plastically-deformed fully-cured composite resinscitations
- 2017Ductility potential of brittle epoxiescitations
- 2017Piezoelectric effects in boron nitride nanotubes predicted by the atomistic finite element method and molecular mechanicscitations
- 2016Smoothing artificial stress concentrations in voxel-based models of textile compositescitations
- 2016Predicting wrinkle formation in components manufactured from toughened UD prepreg
- 2016Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellationcitations
- 2016Understanding and prediction of fibre waviness defect generation
- 2016An experimental investigation of the consolidation behaviour of uncured prepregs under processing conditionscitations
- 2015Internal geometric modelling of 3D woven compositescitations
- 2015The compaction behaviour of un-cured prepregs
- 2014Mechanical modelling of 3D woven composites considering realistic unit cell geometrycitations
- 2013NOVEL FLEXIBLE TOOLING TO ENHANCE LIQUID RESIN INFUSION MANUF-ACTURE FOR NET-SHAPED PREFORMS
Places of action
Organizations | Location | People |
---|
article
Internal geometric modelling of 3D woven composites
Abstract
<p>The mechanical behaviour of 3D woven composite materials is affected by deformations as resulting from the manufacturing process. The present study is based on comparison of three different methodologies to predict the internal yarn geometries of 3D through-thickness orthogonal interlock. The first approach idealises the geometry, which is obtained directly from manufacturing parameters assuming constant elliptical cross-sections. The second technique generates the yarn geometry from the Digital Element Method, which simulates the compaction process of the material. The last method considered is an analytical method defining longitudinal and transverse contours, which describe the undulation of fill, warp and binder yarns. The yarn geometries from the different methods are numerically analysed using voxel finite element analysis to determine the global volume fraction and the elastic properties. The results are also compared with experimental values to determine the strengths and weaknesses of each approach. The first approach is quicker than the others although the geometry is not the most accurate. The second and third method have a good match between the predicted geometry and optical micrograph of the fabric and the elastic properties are very similar for both methods.</p>