People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aghdam, M. M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2016Modeling and analysis of reversible shape memory adaptive panelscitations
- 2015Micro-mechanics of composite with SMA fibers embedded in metallic/polymeric matrix under off-axial loadingscitations
- 2015A simple and efficient 1-D macroscopic model for shape memory alloys considering ferro-elasticity effect
- 2015Micromechanics of shape memory alloy fiber-reinforced composites subjected to multi-axial non-proportional loadingscitations
- 2015Micro-macro thermo-mechanical analysis of axisymmetric shape memory alloy composite cylinderscitations
- 2014Shape control of shape memory alloy composite beams in the post-buckling regimecitations
- 2014Active shape/stress control of shape memory alloy laminated beamscitations
- 2014On the vibration control capability of shape memory alloy composite beamscitations
- 2014A robust three-dimensional phenomenological model for polycrystalline SMAscitations
- 2013A phenomenological SMA model for combined axial-torsional proportional/non-proportional loading conditionscitations
Places of action
Organizations | Location | People |
---|
article
Micro-macro thermo-mechanical analysis of axisymmetric shape memory alloy composite cylinders
Abstract
<p>The present work deals with the micro-macro analysis of shape memory alloy (SMA) fiber-reinforced Epoxy/Aluminum matrix composite cylinders under combined thermo-mechanical loadings. A robust phenomenological constitutive model is implemented to simulate martensite transformation, reorientation of martensite variants, pseudo-elasticity and shape memory effects of SMAs. Epoxy is assumed to behave as a linearly elastic material while Aluminum is considered to behave as an elastic-plastic material with linear kinematic hardening. A representative volume element (RVE) consisting of SMA fibers surrounded with Epoxy/Aluminum matrix is simulated to determine the overall constitutive response of the composite in the generalized plane-strain state. Deformations of the RVE and macro composite cylinder are described based on the small strain and large displacement regimes. Finite element solutions coupled with an iterative elastic-predictor inelastic-corrector procedure are developed to analyze the RVE and macro composite cylinder. In particular, the micro-mechanical solution is implemented to evaluate the constitutive behavior of structural elements made of SMA composite at each iteration of each load step. Parametric studies are performed to examine the effects of pre-strain, SMA fiber volume fraction, fiber orientation, stacking sequence and loading order on the macro-thermo-mechanical responses of long composite cylinders subjected to internal pressure, axial, torsional and thermal loadings.</p>