Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Silva, Mag

  • Google
  • 17
  • 10
  • 913

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2019Bond durability of CFRP laminates-to-steel joints subjected to freeze-thaw46citations
  • 2017Aging of some GFRP-concrete joints under external pressurecitations
  • 2017Bond characteristics of CFRP-to-steel joints77citations
  • 2016Influence of External Compressive Stresses on the Performance of GFRP-to-Concrete Interfaces Subjected to Aggressive Environments: An Experimental Analysis15citations
  • 2015Factors influencing the performance of externally bonded reinforcement systems of GFRP-to-concrete interfaces38citations
  • 2015Bond-slip model for FRP-to-concrete bonded joints under external compression78citations
  • 2014An experimental study of GFRP-to-concrete interfaces submitted to humidity cycles44citations
  • 2014Composites and FRP-Strengthened Beams Subjected to Dry/Wet and Salt Fog Cycles29citations
  • 2014On estimates of durability of FRP based on accelerated tests90citations
  • 2013Bond-slip on CFRP/GFRP-to-concrete joints subjected to moisture, salt fog and temperature cycles69citations
  • 2013Modelling GFRP-to-concrete joints with interface finite elements with rupture based on the Mohr-Coulomb criterion34citations
  • 2013A smeared crack analysis of reinforced concrete T-beams strengthened with GFRP composites24citations
  • 2013Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces65citations
  • 2012Double shear tests to evaluate the bond strength between GFRP/concrete elements40citations
  • 2010Effects of exposure to saline humidity on bond between GFRP and concrete24citations
  • 2010Monotonic axial behavior and modelling of RC circular columns confined with CFRP132citations
  • 2006Size and relative stiffness effects on compressive failure of concrete columns wrapped with glass FRP108citations

Places of action

Chart of shared publication
Biscaia, Hugo C.
4 / 20 shared
Chastre, C.
10 / 17 shared
Yang, Ym
2 / 3 shared
Biscaia, H.
1 / 1 shared
Rodrigues, Cc
2 / 2 shared
Biscaia, Hc
10 / 16 shared
Marreiros, R.
2 / 2 shared
Cidade, Mt
1 / 1 shared
Sena Da Fonseca, Bs
1 / 1 shared
Chastre, Carlos
1 / 27 shared
Chart of publication period
2019
2017
2016
2015
2014
2013
2012
2010
2006

Co-Authors (by relevance)

  • Biscaia, Hugo C.
  • Chastre, C.
  • Yang, Ym
  • Biscaia, H.
  • Rodrigues, Cc
  • Biscaia, Hc
  • Marreiros, R.
  • Cidade, Mt
  • Sena Da Fonseca, Bs
  • Chastre, Carlos
OrganizationsLocationPeople

article

On estimates of durability of FRP based on accelerated tests

  • Sena Da Fonseca, Bs
  • Biscaia, Hugo C.
  • Silva, Mag
Abstract

Structures externally rehabilitated with fiber reinforced plastics (FRP) are often exposed to aggressive environmental conditions that dictate deterioration mechanisms and shorten their structural life-cycle. That degradation and ensuing failure may be due to a combination of factors and the environmental conditions leading to such failures include cyclic temperature variation, sorption of saline moisture due to salt fogging or dry-wet cycles and immersion in water. This study seeks to contribute to better knowledge of the phenomena involved, by studying degradation of GFRP laminates through tests of mechanical strength after accelerated aging designed to estimate long term natural degradation. The measured degradation is extrapolated to other environmental situations likely to occur for longer periods using Arrhenius type of analysis. The validity of the generalizations based on parameters derived from diffusion studies or from the tensile strength tests is examined. It is preliminarily concluded that Arrhenius equations based on experiments made after salt fogging at 30 degrees C, 45 degrees C and 55 degrees C are not applicable. The extrapolations based on diffusion laws were found unsuccessful. However it was possible to extend the results after accelerated aging to prototype conditions in the case of immersion in salt water by application of Arrhenius methods.

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • strength
  • aging
  • tensile strength
  • aging