People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chastre, C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2019Bond durability of CFRP laminates-to-steel joints subjected to freeze-thawcitations
- 2018Experimental and numerical analyses of flexurally-strengthened concrete T-beams with stainless steelcitations
- 2018Development of a simple bond-slip model for joints monitored with the DIC techniquecitations
- 2017Prediction of the interfacial performance of CFRP laminates and old timber bonded joints with different strengthening techniquescitations
- 2017Bond characteristics of CFRP-to-steel jointscitations
- 2017Flexural Strengthening of Old Timber Floors with Laminated Carbon Fiber-Reinforced Polymerscitations
- 2016Analysis of the debonding process of CFRP-to-timber interfacescitations
- 2016Influence of External Compressive Stresses on the Performance of GFRP-to-Concrete Interfaces Subjected to Aggressive Environments: An Experimental Analysiscitations
- 2016Experimental Evaluation of Bonding between CFRP Laminates and Different Structural Materialscitations
- 2015Numerical modelling of the effects of elevated service temperatures on the debonding process of FRP-to-concrete bonded jointscitations
- 2015Factors influencing the performance of externally bonded reinforcement systems of GFRP-to-concrete interfacescitations
- 2015Bond-slip model for FRP-to-concrete bonded joints under external compressioncitations
- 2014An experimental study of GFRP-to-concrete interfaces submitted to humidity cyclescitations
- 2013Modelling GFRP-to-concrete joints with interface finite elements with rupture based on the Mohr-Coulomb criterioncitations
- 2013A smeared crack analysis of reinforced concrete T-beams strengthened with GFRP compositescitations
- 2013Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfacescitations
- 2012Double shear tests to evaluate the bond strength between GFRP/concrete elementscitations
Places of action
Organizations | Location | People |
---|
article
An experimental study of GFRP-to-concrete interfaces submitted to humidity cycles
Abstract
Systems externally reinforced by bonded fibre reinforced polymers (FRP) are widely used in the retrofitting and strengthening of reinforced concrete (RC) structures. A drawback of the usage of this technique lies on the uncertainty of the long term behaviour of those reinforcements. Researchers have paid heed to this aspect and a number of tests and alternative techniques have recently been described. An experimental programme developed to supplement work of the authors recently published and which focused on specimens not submitted to aggressive environments is described. The specimens used have the same geometry as in the previous paper, but they were exposed to salt fog cycles and dry/wet cycles with salt water for periods of 3000 h, 5000 h and 10,000 h. The interface of the glass fiber polymeric composite (GFRP)-to-concrete was characterized after the systems underwent such aggressive conditions. The GFRP wrap comprised of two layers and wet lay-up technique was used on its preparation and application. The cohesion and friction angle for GFRP-to-concrete interfaces were measured tat selected stages of ageing process and envelope failure laws were obtained based on the Mohr-Coulomb failure criterion. Changes of 27% in cohesion and 8% in the friction angle were found due to the attack of the interface and consequences of the changes are examined. Crown Copyright