People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Castro, Saullo G. P.
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Explainable Artificial Intelligence to Investigate the Contribution of Design Variables to the Static Characteristics of Bistable Composite Laminatescitations
- 2022Developing Equations for Free Vibration Parameters of Bistable Composite Plates Using Multi-Objective Genetic Programming
- 2022Developing Equations for Free Vibration Parameters of Bistable Composite Plates Using Multi-Objective Genetic Programming
- 2022Measurement of damage growth in ultrasonic spot welded joint
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Semi-analytical modelling of variable stiffness laminates with discontinuitiescitations
- 2021Circumferential and radial lamina application for natural frequencies problems
- 2020Numerical investigation of rain droplet impact on offshore wind turbine blades under different rainfall conditionscitations
- 2020A multiaxial fatigue damage model for isotropic materialscitations
- 2019Supersonic Flutter and Buckling Optimization of Tow Steered Composite Platescitations
- 2018An active-passive nonlinear finite element model for electromechanical composite morphing beams
- 2017Aeroelastic behavior of stiffened composite laminated panel with embedded SMA wire using the hierarchical Rayleigh–Ritz methodcitations
- 2017Assembly of semi-analytical models to address linear buckling and vibration of stiffened composite panels with debonding defectcitations
- 2017Panel flutter analysis and optimization of composite tow steered platescitations
- 2017Buckling of axially compressed CFRP cylinders with and without additional lateral loadcitations
- 2016Design and Manufacture of Conical Shell Structures Using Prepreg Laminatescitations
- 2016Flutter of stiffened composite panels considering the stiffener's base as a structural elementcitations
- 2015Experimental nondestructive test for estimation of buckling load on unstiffened cylindrical shells using vibration correlation techniquecitations
- 2015Investigation of Buckling Behavior of Composite Shell Structures with Cutoutscitations
- 2015Experimental and numerical estimation of buckling load on unstiffened cylindrical shells using a vibration correlation techniquecitations
- 2014Numerical characterization of imperfection sensitive composite structurescitations
- 2014Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shellscitations
- 2014Verification study on buckling behaviour of composite cylinder with eccentric supports
Places of action
Organizations | Location | People |
---|
article
Numerical characterization of imperfection sensitive composite structures
Abstract
<p>Currently, imperfection sensitive shell structures prone to buckling are designed according to the NASA SP-8007 guideline, from 1968, using its conservative lower bound curve. In this guideline the structural behavior of composite materials is not appropriately considered, since the imperfection sensitivity and the buckling load of shells made of such materials depend on the lay-up design. In this context a numerical investigation about the different methodologies to characterize the behavior of imperfection sensitive composite structures subjected to compressive loads up to buckling is presented in this paper. A comparative study is addressed between a new methodology, called "Single Perturbation Load Approach", adopted by the European project DESICOS, and some classical approaches such as non-linear analyses considering geometric and thickness imperfection obtained from real measurements. An extension of the Single Perturbation Load Approach called "Multiple Perturbation Load Approach" is also introduced in this paper to investigate if one perturbation load is enough to create the worst geometrical imperfection case.The aim of this work is to validate these numerical methodologies with experimental results and point out their limitation, advantage and disadvantage, to calculate less conservative knock-down factors than the obtained with the NASA SP-8007 guideline for unstiffened composite cylinders.</p>