Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cousigné, Olivier

  • Google
  • 2
  • 5
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2013Contribution au développement de la simulation numérique des matériaux composites à renforts tissés pour l'application au crash ; Contribution to the development of the numerical simulation of woven composites for crash applicationscitations
  • 2013Development of a new nonlinear numerical material model for woven composite materials accounting for permanent deformation and damage40citations

Places of action

Chart of shared publication
Coutellier, Daniel
1 / 11 shared
Naceur, Hakim
1 / 13 shared
Camanho, Pp
1 / 229 shared
Hampel, Steffen
1 / 1 shared
Moncayo, David
1 / 1 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Coutellier, Daniel
  • Naceur, Hakim
  • Camanho, Pp
  • Hampel, Steffen
  • Moncayo, David
OrganizationsLocationPeople

article

Development of a new nonlinear numerical material model for woven composite materials accounting for permanent deformation and damage

  • Cousigné, Olivier
  • Coutellier, Daniel
  • Naceur, Hakim
  • Camanho, Pp
  • Hampel, Steffen
  • Moncayo, David
Abstract

International audience ; Due to their draping, stiffness, improved ductility and damage tolerance properties woven composites are being increasingly used for the construction of crash-relevant structural parts. Textile composites may depict a nonlinear behavior along several directions. Moreover, considerably-thick composite structures are likely to be used in order to increase energy absorption and to comply with the crash validation criteria. Therefore, a nonlinear numerical material model for textile composite materials has been developed for shells and thick shells. The model has been implemented as a user-defined subroutine (UMAT) in the LS-DYNA finite element code featuring with explicit time integration. The nonlinear behavior until failure is modeled in each in-plane material direction by a user-defined load curve or the Ramberg–Osgood equation. A plasticity formulation coupled with the nonlinearity accounts for permanent deformations. The failure is predicted using either a maximal stress criterion or the quadratic Tsai–Wu criterion. In order to model damage propagation, different post-failure damage definitions have been developed and implemented for each main in-plane material direction. A smeared formulation ensures the mesh independence in the presence of strain localization. The model has been assessed using characterization tensile and compressive tests on plain-weave and twill-weave carbon fiber composites.

Topics
  • impedance spectroscopy
  • Carbon
  • composite
  • plasticity
  • ductility
  • laser sintering
  • woven