People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oliveira, Msa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2013Shape memory polyurethanes reinforced with carbon nanotubescitations
- 2013The effect of carbon nanotubes on viscoelastic behaviour of biomedical grade ultra-high molecular weight polyethylenecitations
- 2011Enhanced UHMWPE Reinforced with MWCNT through Mechanical Ball-Millingcitations
- 2011The Use of Taguchi Technique to Optimize the Compression Moulding Cycle to Process Acetabular Cup Componentscitations
- 2011Performance of nanocrystalline diamond coated micromolding tools
- 2011Thermo-Mechanical Behaviour of Ultrahigh Molecular Weight Polyethylene-Carbon Nanotubes Composites under Different Cooling Techniquescitations
- 2010Tribological characterisation of carbon nanotubes/ultrahigh molecular weight polyethylene composites: the effect of sliding distancecitations
- 2010In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cellscitations
- 2009Tribology of biocompositescitations
- 2008Time-modulated chemical vapour deposition diamonf on mould making 2738 steelcitations
- 2008Dynamic Mechanical Analysis of Multi-Walled Carbon Nanotube/HDPE Compositescitations
- 2007Mechanical properties of high density polyethylene/carbon nanotube compositescitations
Places of action
Organizations | Location | People |
---|
article
Shape memory polyurethanes reinforced with carbon nanotubes
Abstract
New shape-memory materials (SMMs) for applications in active control and morphing structures have been attracting special attention due to its unique properties. These SMM can be metallic alloys (SMAs), piezoelectric, and polymers such as polyurethanes (SMPUs). The latter detain higher recovery rates but better processability, however, the reaction time is longer when compared with the SMA. The addition of carbon nanotubes (CNTs) to SMPU seems to improve its overall properties with a great deal of potential in what concerns improved shape memory. There are two main techniques to attain SMPU/CNts nanocomposites: in situ polymerization and mechanical melt mixing. The study here presented establishes a comparison between these two techniques. To assess the suitability of the latter a rather extensive characterization was carried out. The homogeneity of the CNTs dispersion into the polymer matrix was established through SEM and the thermal characterization has shown a rise in the glass transition temperature consistent with CNT loading. Furthermore, shape memory seems to improve with the nanoparticle reinforcement. Within the two processing techniques it could be referred that melt processing seems to be simpler to use with better laboratory repeatability, thus detaining a greater potential should nanocomposite tailoring at a larger scale be envisaged.