People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Turteltaub, Sergio
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020An enhanced curvature-constrained design method for manufacturable variable stiffness composite laminatescitations
- 2019Multiscale modeling of the effect of sub-ply voids on the failure of composite materialscitations
- 2019Computational investigation of porosity effects on fracture behavior of thermal barrier coatingscitations
- 2018A micromechanical fracture analysis to investigate the effect of healing particles on the overall mechanical response of a self-healing particulate compositecitations
- 2018Determination of fracture strength and fracture energy of (metallo-) ceramics by a wedge loading methodology and corresponding cohesive zone-based finite element analysiscitations
- 2018Multiscale analysis of mixed-mode fracture and effective traction-separation relations for composite materialscitations
- 2018Modelling the fracture behaviour of thermal barrier coatings containing healing particlescitations
- 2016Thermomechanical discrete dislocation-transformation model of single-crystal shape memory alloycitations
- 2011Analysis of banded morphology in multiphase steels based on a discrete dislocation-transformation modelcitations
- 2009Transformation-induced plasticity in multiphase steels subjected to thermomechanical loading.citations
Places of action
Organizations | Location | People |
---|
article
An enhanced curvature-constrained design method for manufacturable variable stiffness composite laminates
Abstract
<p>In this paper, design strategies are developed to explore better approaches of enforcing local layer-wise curvature constraints in the optimization of variable stiffness laminates in order to ensure the manufacturability of optimized designs based on the limitations of automated fiber placement. The methods developed here aim to improve an existing approach of imposing the curvature constraint directly on the fiber angles (i.e., direct control method) and are suitable for a design framework that uses lamination parameters as primary design variables. One approach developed here, termed the indirect control method, enforces the curvature constraint indirectly with better computational efficiency through the spatial gradient of the lamination parameters. It is shown that the curvature constraint on the actual fiber angles can also be satisfied with a sufficiently stringent upper bound albeit it produces overly conservative designs. Alternatively, an enhanced approach, termed the hybrid control method, is developed by combining the direct method and a relaxed version of the indirect control method. The case studies of minimum compliance design indicate that it provides the best manufacturable design among the three methods in the context of variable stiffness laminates using lamination parameters.</p>