Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jenkel, Christian

  • Google
  • 1
  • 6
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Mechanical characterization of wood: An integrative approach ranging from nanoscale to structure36citations

Places of action

Chart of shared publication
Montero, Cédric
1 / 9 shared
Gril, Joseph
1 / 26 shared
Kaliske, Michael
1 / 16 shared
Eberhardsteiner, Josef
1 / 4 shared
Borst, Karin De
1 / 1 shared
Colmars, Julien
1 / 5 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Montero, Cédric
  • Gril, Joseph
  • Kaliske, Michael
  • Eberhardsteiner, Josef
  • Borst, Karin De
  • Colmars, Julien
OrganizationsLocationPeople

article

Mechanical characterization of wood: An integrative approach ranging from nanoscale to structure

  • Montero, Cédric
  • Gril, Joseph
  • Kaliske, Michael
  • Eberhardsteiner, Josef
  • Jenkel, Christian
  • Borst, Karin De
  • Colmars, Julien
Abstract

Wood is enjoying increasing popularity in the building sector. In order to fully exploit the potential of this material, particularly in two and three-dimensional structures, improved knowledge of the mechanical behavior of the material and more complex constitutive models are required. We herein present a holistic approach to mechanical material modeling of wood, including a multitude of length scales as well as computational and experimental efforts. This allows to resolve the microstructural origin of the macro- scopic material behavior and to finally apply the gained knowledge to structural applications in a timber engineering framework. Focusing on elastoplasticity and viscoelasticity, exemplary results of the per- formed investigations are presented and their interrelations discussed. Regarding computational approaches, presented developments include multiscale models for prediction of elastic limit states and creep compliances of wood, macroscopic phenomenological models for wood plasticity and the time and moisture-dependent behavior, and their applications to investigations of dowel-joints and glued- laminated timber beams. Accompanying experiments provided additional input data for the computa- tional analyses, therewith completing the set of material properties predicted by the multiscale models. Moreover, they served as the reference basis for model validation at both the material and the structural scale.

Topics
  • impedance spectroscopy
  • experiment
  • viscoelasticity
  • plasticity
  • wood
  • creep