People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baere, Ives De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Fatigue behaviour of thermoplastic glass/polypropylene composite cross-ply laminates : an experimental study with in-situ damage observations and numerical validationcitations
- 2023Experimental and numerical fatigue damage characterization in multidirectional thermoplastic glass/polypropylene laminates based on in-situ damage observationscitations
- 2023Relation between ASTM E606 specimen geometry and misalignment in strain-controlled fatigue testingcitations
- 2022Experimental and numerical damage characterization of glass/polypropylene multidirectional laminates under quasi-static loading conditioncitations
- 2021Long-term stiffness prediction of particle filled polymers by dynamic mechanical analysis : frequency sweep versus creep methodcitations
- 2021Multi scale digital image correlation for automatic edge detection of ply cracks in composite laminates under quasi static and fatigue loading
- 2020Influencing parameters on measurement accuracy in dynamic mechanical analysis of thermoplastic polymers and their compositescitations
- 2020Dynamic Curing Agents for Amine-Hardened Epoxy Vitrimers with Short (Re)processing Timescitations
- 2017Electrospun nanofibers for highly toughened fibre reinforced polymer composite laminates
- 2017Improved fatigue delamination behaviour of composite laminates with electrospun thermoplastic nanofibrous interleaves using the Central Cut-Ply methodcitations
- 2016Damage-resistant composites using electrospun nanofibers: a multiscale analysis of the toughening mechanismscitations
- 2016TOWARDS DAMAGE RESISTANT COMPOSITES USING ELECTROSPUN NANOFIBERS: A MULTISCALE ANALYSIS OF THE TOUGHENING MECHANISMS
- 2016Interlaminar toughening of resin transfer molded laminates by electrospun polycaprolactone structures : effect of the interleave morphologycitations
- 2016Increasing the damage resistance of composites by interleaving them with electrospun nanofibrous veils
- 2015Ultrasonic polar scan imaging of fatigued fiber reinforced composites
- 2015Using a polyester binder for the interlaminar toughening of glass/epoxy composite laminates
- 2014Damage Signature of Fatigued Fabric Reinforced Plastics in the Pulsed Ultrasonic Polar Scan
- 2013Modifying the crack growth in a glass fiber reinforced epoxy by adding polyamide 6 nanofibers
- 2012The influence of polyamide 6 nanofibres on the mechanical properties of glass fibre/epoxy composites
- 2007Strain monitoring in thermoplastic composites with optical fiber sensors: embedding process, visualization with micro-tomography, and fatigue results
Places of action
Organizations | Location | People |
---|
article
Experimental and numerical damage characterization of glass/polypropylene multidirectional laminates under quasi-static loading condition
Abstract
Polypropylene (PP) as a commodity thermoplastic, when reinforced with continuous glass fibers provides cost-effective composites. However, the low glass transition temperature and fabrication induced semi-crystalline morphology of PP set challenges for the experimental characterization especially when the quantification of damage mechanisms in multidirectional laminates is concerned. This paper is aimed at performing in-situ experimental observation, quantification and theoretical modeling of damage mechanisms in glass fiber rein-forced polypropylene multidirectional laminates subjected to uniaxial quasi-static loading conditions. Two Stereo Digital Image Correlation systems (3D-DIC) are applied to measure the full-field strains and quantify the extent of damage mechanisms from the specimen's edge. The effects of ply thickness, off-axis ply orientation and location on damage initiation and growth are studied by testing different lay-ups. To validate the experimental measurements, a recent physics-based modeling technique is implemented that can predict the evolution of damage modes as well as their effects on the laminate properties. Good agreements are observed between the experimental measurements and simulation results which verify the accuracy of both analyses.