People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barg, Suelen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2022Joule heating and mechanical properties of epoxy/graphene based aerogel compositecitations
- 2022Tailoring the microstructure of lamellar Ti3C2Tx MXene aerogel by compressive strainingcitations
- 2021Realization of 3D epoxy resin/Ti3C2Tx MXene aerogel composites for low-voltage electrothermal heatingcitations
- 2021Unused to useful: Recycling plasma chamber coated waste composite of ZnO and α-Fe2O3 into an active material for sustainable waste-water treatment
- 2020MXene-Based 3D Porous Macrostructures for Electrochemical Energy Storagecitations
- 2020Direct 3D Printing of Graphene Using Capillary Suspensionscitations
- 2020Heteroatom‐Doped and Oxygen‐Functionalized Nanocarbons for High‐Performance Supercapacitorscitations
- 2016Light and Strong SiC Networkscitations
- 2016Light and Strong SiC Networkscitations
- 2015Printing in Three Dimensions with Graphenecitations
- 2014Macroporous polymer nanocomposites synthesised from high internal phase emulsion templates stabilised by reduced graphene oxidecitations
- 2010Producing open-porous inorganic component with layer having homogenous pore structure, comprises solidifying emulsion consisting of stabilized aqueous inorganic suspension, alkane and emulsifier to obtain basic body by freezing process
- 2009New cellular ceramics from high alkane phase emulsified suspensions (HAPES)citations
- 2009New cellular ceramics from high alkane phase emulsified suspensions (HAPES)citations
- 2009Processing and Properties of Graded Ceramic Filterscitations
- 2008Modeling of glass sintering applied for the fabrication of porous glass bodiescitations
- 2008Cellular ceramics by direct foaming of emulsified ceramic powder suspensionscitations
Places of action
Organizations | Location | People |
---|
article
Joule heating and mechanical properties of epoxy/graphene based aerogel composite
Abstract
While polymer composites are anticipated as a promising alternative for Joule heating materials, constructing a continuous conductive network of fillers remains an open challenge to obtain high-performance Joule heating properties with the high steady-state surface temperature at low power input, rapid heating/cooling rate, and excellent cycle stability. Herein, we designed a three-dimensional graphene-based aerogel, infiltrated epoxy into it, and demonstrated a key role of 2D materials-based three-dimensional filler on the anisotropic Joule heating performances of the final aerogel composite. The aerogel composite with the highest graphene loading of 4.7 wt% shows outstanding Joule heating performance with a steady-state temperature of 213 °C at a relatively low applied voltage of 5 V. Benefiting from the 3D graphene structure, the epoxy/graphene-based aerogel composites show an excellent electrical conductivity of 48.7 S/m and thermal conductivity of 1.1 W/mK along the parallel direction to the lamellar structure growth. The Joule heating performance of epoxy/graphene-based aerogel composite is correlated with the morphology, electrical conductivities, and thermal conductivities. Importantly, the induced steady-state temperature follows a linear relationship with both the electrical and thermal conductivities of materials. Mechanical properties of aerogel composite is also studied. The obtained results indicate that the epoxy/graphene-based aerogel composite can be a promising material for thermal management applications.