Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Todorovic, Nikola

  • Google
  • 2
  • 7
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Sulfonated hypercrosslinked polymer enhanced structural composite supercapacitors15citations
  • 2022Towards separator-free structural composite supercapacitors25citations

Places of action

Chart of shared publication
Bismarck, Alexander
2 / 142 shared
Mautner, Andreas
1 / 26 shared
Woodward, Robert T.
1 / 4 shared
Blocher, Alexander
1 / 1 shared
Costagliola, Elodie
1 / 1 shared
Hubert, Olivier
2 / 46 shared
González, Lina M. Rojas
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Bismarck, Alexander
  • Mautner, Andreas
  • Woodward, Robert T.
  • Blocher, Alexander
  • Costagliola, Elodie
  • Hubert, Olivier
  • González, Lina M. Rojas
OrganizationsLocationPeople

article

Towards separator-free structural composite supercapacitors

  • Bismarck, Alexander
  • Hubert, Olivier
  • Todorovic, Nikola
Abstract

Structural supercapacitors can both carry load and store electrical energy. An approach to build such devices is to modify carbon fibre surfaces to increase their specific surface area and to embed them into a structural electrolyte. We present a way to coat carbon fibres with graphene nanoplatelets by electrophoretic deposition in water. The effect of time and voltage on the mechanical properties of the carbon fibres, the structure of the coating and the specific surface area of the coated carbon fibres are discussed. A specific capacity of 1.44 F/g was reached, which is 130% higher than state-of-the-art structural electrodes. We demonstrate the scalability of the deposition process to continuous production of coated carbon fibres. These carbon fibre electrodes were used to realise large (21 cm long) structural supercapacitor demonstrators without the need for a separator, having a specific capacity of 623 mF/g.

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • Carbon
  • structural composite