People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Daelemans, Lode
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (56/56 displayed)
- 2024Low-Velocity Impact Resistance and Compression After Impact Strength of Thermoplastic Nanofiber Toughened Carbon/Epoxy Composites with Different Layupscitations
- 2024Low-Velocity Impact Resistance and Compression After Impact Strength of Thermoplastic Nanofiber Toughened Carbon/Epoxy Composites with Different Layupscitations
- 2024Thermomechanical characterisation of reprocessable, siloxane-based, glass-fibre-reinforced vitrimerscitations
- 2024Study of the temperature-humidity equivalence and the time-temperature superposition principle in the finite-strain response of polyamide-6 and short glass fibre-reinforced polyamide-6
- 2024Thermomechanical coupling during tensile testing of PA6 and short fibre glass/PA6
- 2024Study of self-heating and local strain rate in polyamide-6 and short fibre glass/polyamide-6 under tension through synchronised full-field strain and temperature measurementscitations
- 2023ECCM Research Topic on advanced manufacturing of composites
- 2023Development of a versatile speckle pattern of nano-sized polymer particles for high-resolution SEM-DICcitations
- 2022A new virtual fiber modeling approach to predict the kinematic and mechanical behavior of through-thickness fabric compression
- 2022A new virtual fiber modeling approach to predict the kinematic and mechanical behavior of through-thickness fabric compression
- 2022A new virtual fiber modeling approach to predict the kinematic and mechanical behavior of through-thickness fabric compression
- 2022Microscale numerical simulation of yarn tensile behavior using a high-fidelity geometrical fiber model extracted from micro-CT imaging
- 2022Effect of fibre orientation, temperature, moisture content and strain rate on the tensile behaviour of short glass fibre-reinforced polyamide 6
- 2022Continuous fiber-reinforced aramid/PETG 3D-printed composites with high fiber loading through fused filament fabricationcitations
- 2021Building the third dimension : microstructure and mechanics of Additive Manufactured continuous Aramid fiber/PETG composites with variable fiber content through in-nozzle impregnation
- 2021Building the third dimension : microstructure and mechanics of Additive Manufactured continuous Aramid fiber/PETG composites with variable fiber content through in-nozzle impregnation
- 2021Toughening mechanisms responsible for excellent crack resistance in thermoplastic nanofiber reinforced epoxies through in-situ optical and scanning electron microscopycitations
- 2021Fully integrated flexible dielectric monitoring sensor system for real-time in situ prediction of the degree of cure and glass transition temperature of an epoxy resincitations
- 2021Long-term stiffness prediction of particle filled polymers by dynamic mechanical analysis : frequency sweep versus creep methodcitations
- 2021Kinematic and mechanical response of dry woven fabrics in through-thickness compression: Virtual fiber modeling with mesh overlay technique and experimental validationcitations
- 2021Lifting the quality of fused filament fabrication of polylactic acid based compositescitations
- 2020Nanofibre toughening of dissimilar interfaces in compositescitations
- 2020The transferability and design of commercial printer settings in PLA/PBAT fused filament fabricationcitations
- 2020Influencing parameters on measurement accuracy in dynamic mechanical analysis of thermoplastic polymers and their compositescitations
- 2020Delamination resistant composites by interleaving bio-based long-chain polyamide nanofibers through optimal control of fiber diameter and fiber morphologycitations
- 2020Effect of interleaved polymer nanofibers on the properties of glass and carbon fiber compositescitations
- 2020In-Situ Observations of Microscale Ductility in a Quasi-Brittle Bulk Scale Epoxycitations
- 2019Composite Materials: Excellent nanofiber adhesion for hybrid polymer materials with high toughness based on matrix interdiffusion during chemical conversion (Adv. Funct. Mater. 8/2019)citations
- 2019Interdiffusing core-shell nanofiber interleaved composites for excellent Mode I and Mode II delamination resistancecitations
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing
- 2019Improving mechanical properties for extrusion-based additive manufacturing of poly(lactic acid) by annealing and blending with poly(3-hydroxybutyrate)citations
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend development for extrusion-based additive manufacturing
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend development for extrusion-based additive manufacturing
- 2018Electrospun nanofibrous interleaves for improved low velocity impact resistance of glass fibre reinforced composite laminatescitations
- 2018Size limitations on achieving tough and healable fibre reinforced composites through the use of thermoplastic nanofibrescitations
- 2017Novel composite materials with tunable delamination resistance using functionalizable electrospun SBS fiberscitations
- 2017Electrospun nanofibers for highly toughened fibre reinforced polymer composite laminates
- 2017INTERLAMINAR TOUGHENING OF RESIN TRANSFER MOLDED LAMINATES BY ELECTROSPUN POLYCAPROLACTONE STRUCTURES: EFFECT OF THE INTERLEAVE MORPHOLOGY
- 2017Improved fatigue delamination behaviour of composite laminates with electrospun thermoplastic nanofibrous interleaves using the Central Cut-Ply methodcitations
- 2016Damage-resistant composites using electrospun nanofibers: a multiscale analysis of the toughening mechanismscitations
- 2016TOWARDS DAMAGE RESISTANT COMPOSITES USING ELECTROSPUN NANOFIBERS: A MULTISCALE ANALYSIS OF THE TOUGHENING MECHANISMS
- 2016TOWARDS DAMAGE RESISTANT COMPOSITES USING ELECTROSPUN NANOFIBERS: A MULTISCALE ANALYSIS OF THE TOUGHENING MECHANISMS
- 2016Electrospinning of sacrificial nanofibers for the creation of a self-healing nanovascular network and its effect on the properties of an epoxy matrix
- 2016Electrospinning of sacrificial nanofibers for the creation of a self-healing nanovascular network and its effect on the properties of an epoxy matrix
- 2016Interlaminar toughening of resin transfer molded laminates by electrospun polycaprolactone structures : effect of the interleave morphologycitations
- 2016Increasing the damage resistance of composites by interleaving them with electrospun nanofibrous veils
- 2016Using aligned nanofibres for identifying the toughening micromechanisms in nanofibre interleaved laminatescitations
- 2016Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element methodcitations
- 2015Using a polyester binder for the interlaminar toughening of glass/epoxy composite laminates
- 2015Using a polyester binder for the interlaminar toughening of glass/epoxy composite laminates
- 2015Bisphenol A based polyester binder as an effective interlaminar toughenercitations
- 2015Bisphenol A based polyester binder as an effective interlaminar toughenercitations
- 2015Nanofibre bridging as a toughening mechanism in carbon/epoxy composite laminates interleaved with electrospun polyamide nanofibrous veilscitations
- 2015INTERLAMINAR TOUGHENING OF RESIN TRANSFER MOULDED GLASS FIBRE EPDXY LAMINATES BY POLYCAPROLACTONE ELECTROSPUN NANOFIBRES
- 2014Interlaminar toughening of resin transfer moulded glass fibre epoxy laminates by polycaprolactone electrospun nanofibrescitations
Places of action
Organizations | Location | People |
---|
article
Toughening mechanisms responsible for excellent crack resistance in thermoplastic nanofiber reinforced epoxies through in-situ optical and scanning electron microscopy
Abstract
Epoxy is a material of choice for demanding applications thanks to its high chemical stability, stiffness, and strength. Yet, its brittle fracture behavior is an important downside for many sectors. Here, we show that the addition of electrospun thermoplastic nanofibers is a viable toughening strategy to design nanofiber reinforced epoxy materials with excellent toughness. Moreover, the use of transparent film-like specimens allowed in-situ imaging during mechanical testing. Optical and scanning electron microscopy, digital image correlation and crack length measurements are used to analyze the toughening mechanisms responsible for high toughening efficiency in detail. The addition of polyamide and polycaprolactone nanofibers resulted in an increased plastic energy uptake up to 100%. In-situ observation of the crack tip showed that the main energy-absorbing mechanism was due to bridging nanofibers. There was a profound decrease in toughening efficiency when nanofibers lacked sufficient adhesion with the matrix only when they were oriented parallel with the crack growth direction. The profound understanding of such underlying mechanisms opens up material design in applications where high toughness is required like adhesives, coatings, and fiber-reinforced composite laminates.