People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Murphy, Neal
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Interfacial properties of carbon fiber‐reinforced biobased resin composites by single fiber fragmentation, fiber push‐out, and interlaminar shear strengthcitations
- 2021Fatigue delamination behaviour of carbon fibre/epoxy composites interleaved with thermoplastic veilscitations
- 2020Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veilscitations
- 2020Mode-II fracture behaviour of aerospace-grade carbon fibre/epoxy composites interleaved with thermoplastic veilscitations
- 2020Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substratescitations
- 2020Effect of interlaying UV-irradiated PEEK fibres on the mechanical, impact and fracture response of aerospace-grade carbon fibre/epoxy compositescitations
- 2020The influence of interlayer/epoxy adhesion on the mode-I and mode-II fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veilscitations
- 2014Impact fatigue fracture of polycrystalline diamond compact (PDC) cutters and the effect of microstructurecitations
- 2014Impact fatigue fracture of polycrystalline diamond compact (PDC) cutters and the effect of microstructurecitations
- 2013Influence of an Atmospheric Pressure Plasma Surface Treatment on the Interfacial Fracture Toughness on Bonded Composite Joints
- 2013Arbitrary crack propagation in multi-phase materials using the finite volume methodcitations
- 2013Characterisation of the fracture energy and toughening mechanisms of a nano-toughened epoxy adhesivecitations
- 2013Dynamic crack bifurcation in PMMAcitations
- 2013Effect of prepreg storage humidity on the mixed-mode fracture toughness of a co-cured composite jointcitations
- 2013An Experimental and Numerical Investigation of the Mixed-mode Fracture Toughness and Lap Shear Strength of Aerospace Grade Composite Joints
- 2013The mechanical properties of polycrystalline diamond as a function of strain rate and temperaturecitations
- 2013High rate and high temperature fracture behaviour of polycrystalline diamondcitations
- 2013Micro-Mechanical Modelling of Void Growth, Damage and Fracture of Nano-Phase Structural Adhesives Using the Finite Volume Method
- 2013The prediction of dynamic fracture evolution in PMMA using a cohesive zone modelcitations
Places of action
Organizations | Location | People |
---|
article
Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substrates
Abstract
A high-power UV-irradiation technique was proposed for the surface treatment of PPS and PEEK composites, aiming to achieve good adhesion with epoxy adhesives. The composite substrates were rapidly UV-irradiated for a duration of between 2–30s, and then bonded using an aerospace film adhesive to produce joints. Tensile lap-shear strength and mode-I and mode-II fracture energies of the adhesive joints were investigated. It was observed that the application of a short-time UV-irradiation to the substrates transformed the failure mode of the specimens from adhesion failure to substrate damage in all cases. This consequently resulted in remarkable improvements in the mechanical and fracture performance of the adhesive joints. For example, the lap-shear strength increased from 11.8MPa to 31.7MPa upon UV-irradiating the PPS composites for 3s, and from 8.3MPa to 37.3MPa by applying a 5s UV-irradiation to the PEEK composites. Moreover, the mode-I and mode-II fracture energies significantly increased from ∼50J/m2 to ∼1500J/m2 and from <300J/m2 to ∼7000J/m2, respectively for both of the adhesively bonded PEEK and PPS composite joints.