People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Quan, Dong
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Recycled carbon fibre mats for interlayer toughening of carbon fibre/epoxy compositescitations
- 2022Co-cured carbon fibre/epoxy composite joints by advanced thermoplastic films with excellent structural integrity and thermal resistancecitations
- 2021Fatigue delamination behaviour of carbon fibre/epoxy composites interleaved with thermoplastic veilscitations
- 2020Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veilscitations
- 2020Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substratescitations
- 2020The influence of interlayer/epoxy adhesion on the mode-I and mode-II fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veilscitations
Places of action
Organizations | Location | People |
---|
article
Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substrates
Abstract
A high-power UV-irradiation technique was proposed for the surface treatment of PPS and PEEK composites, aiming to achieve good adhesion with epoxy adhesives. The composite substrates were rapidly UV-irradiated for a duration of between 2–30s, and then bonded using an aerospace film adhesive to produce joints. Tensile lap-shear strength and mode-I and mode-II fracture energies of the adhesive joints were investigated. It was observed that the application of a short-time UV-irradiation to the substrates transformed the failure mode of the specimens from adhesion failure to substrate damage in all cases. This consequently resulted in remarkable improvements in the mechanical and fracture performance of the adhesive joints. For example, the lap-shear strength increased from 11.8MPa to 31.7MPa upon UV-irradiating the PPS composites for 3s, and from 8.3MPa to 37.3MPa by applying a 5s UV-irradiation to the PEEK composites. Moreover, the mode-I and mode-II fracture energies significantly increased from ∼50J/m2 to ∼1500J/m2 and from <300J/m2 to ∼7000J/m2, respectively for both of the adhesively bonded PEEK and PPS composite joints.